1
|
Xuan Y, Wang S, Li S, Yuan J, Zhou Q, He N. Chromosome constitution and genetic relationships of Morus spp. revealed by genomic in situ hybridization. BMC PLANT BIOLOGY 2023; 23:428. [PMID: 37710184 PMCID: PMC10503058 DOI: 10.1186/s12870-023-04448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Mulberry (Morus spp.) is an economically important woody plant, which has been used for sericulture (silk farming) for thousands of years. The genetic background of mulberry is complex due to polyploidy and frequent hybridization events. RESULTS Comparative genomic in situ hybridization (cGISH) and self-GISH were performed to illustrate the chromosome constitution and genetic relationships of 40 mulberry accessions belonging to 12 species and three varietas in the Morus genus and containing eight different ploidy levels. We identified six homozygous cGISH signal patterns and one heterozygous cGISH signal pattern using four genomic DNA probes. Using cGISH and self-GISH data, we defined five mulberry sections (Notabilis, Nigra, Wittiorum, and Cathayana, all contained only one species; and Alba, which contained seven closely related species and three varietas, was further divided into two subsections) and proposed the genetic relationships among them. Differential cGISH signal patterns detected in section Alba allowed us to refine the genetic relationships among the closely related members of this section. CONCLUSIONS We propose that GISH is an efficient tool to investigate the chromosome constitution and genetic relationships in mulberry. The results obtained here can be used to guide outbreeding of heterozygous perennial crops like mulberry.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Sheng Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Siwei Li
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Qiming Zhou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
2
|
Bootter MB, Li J, Zhou W, Edwards D, Batley J. Diversity of Phytosterols in Leaves of Wild Brassicaceae Species as Compared to Brassica napus Cultivars: Potential Traits for Insect Resistance and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091866. [PMID: 37176924 PMCID: PMC10180710 DOI: 10.3390/plants12091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Phytosterols are natural compounds found in all higher plants that have a wide variety of roles in plant growth regulation and stress tolerance. The phytosterol composition can also influence the development and reproductive rate of strict herbivorous insects and other important agronomic traits such as temperature and drought tolerance in plants. In this study, we analysed the phytosterol composition in 18 Brassica napus (Rapeseed/canola) cultivars and 20 accessions belonging to 10 related wild Brassicaceae species to explore diverse and novel phytosterol profiles. Plants were grown in a controlled phytotron environment and their phytosterols were analysed using a saponification extraction method followed by GC-MS from the leaf samples. The B. napus cultivars showed slight diversity in eight phytosterols (>0.02%) due to the genotypic effect, whereas the wild accessions showed significant variability in their phytosterol profiles. Of interest, a number of wild accessions were found with high levels of campesterol (HIN20, HIN23, HUN27, HIN30, SARS2, and UPM6563), stigmasterol (UPM6813, UPM6563, ALBA17, and ALBA2), and isofucosterol (SARS12, SAR6, and DMU2). These changes in individual phytosterols, or ratios of phytosterols, can have a significant implication in plant tolerance to abiotic stress and plant insect resistance properties, which can be used in breeding for crop improvement.
Collapse
Affiliation(s)
| | - Jing Li
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Wenxu Zhou
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Kashyap A, Garg P, Tanwar K, Sharma J, Gupta NC, Ha PTT, Bhattacharya RC, Mason AS, Rao M. Strategies for utilization of crop wild relatives in plant breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4151-4167. [PMID: 36136128 DOI: 10.1007/s00122-022-04220-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.
Collapse
Affiliation(s)
- Anamika Kashyap
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Pooja Garg
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Kunal Tanwar
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Jyoti Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Navin C Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Pham Thi Thu Ha
- Genomic Research Institute & Seed, Ton Duc Thang University, Ho Chi Minh, Vietnam
| | - R C Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India.
| |
Collapse
|
4
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|