1
|
Celebioglu B, Hart JP, Porch T, Griffiths P, Myers JR. Genome-Wide Association Study to Identify Possible Candidate Genes of Snap Bean Leaf and Pod Color. Genes (Basel) 2023; 14:2234. [PMID: 38137056 PMCID: PMC10742591 DOI: 10.3390/genes14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Color can be an indicator of plant health, quality, and productivity, and is useful to researchers to understand plant nutritional content in their studies. Color may be related to chlorophyll content and photosynthetic activity and provides information for those studying diseases and mineral nutrition because every nutrient deficiency and many diseases produce symptoms that affect color. In order to identify significant loci related to both leaf and pod color in a snap bean (Phaseolus vulgaris L.) diversity panel, a genome-wide association study (GWAS) was carried out. Leaf color in one and pod traits in multiple environments were characterized using a colorimeter. L*a*b* color data were recorded and used to calculate chroma (C*) and hue angle (H°). Leaves were evaluated at three positions (lower, middle, and upper) in the canopy and both pod exterior and interior colors were obtained. GWAS was conducted using two reference genomes that represent the Andean (G19833) and Middle American (5-593) domestication centers. Narrow sense heritabilities were calculated using the mixed linear model (MLM) method in genome association and prediction integrated tool (GAPIT), and significant single nucleotide polymorphisms (SNPs) for each color parameter were obtained using the Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) GWAS model with two principal components (PCAs). In comparison to pod color traits, narrow sense heritabilities of leaf traits were low and similar for both reference genomes. Generally, narrow sense heritability for all traits was highest in the lower, followed by middle, and then upper leaf positions. Heritability for both pod interior and exterior color traits was higher using the G19833 reference genome compared to 5-593 when evaluated by year and means across years. Forty-five significant SNPs associated with leaf traits and 872 associated with pods, totaling 917 significant SNPs were identified. Only one SNP was found in common for both leaf and pod traits on Pv03 in the 5-593 reference genome. One-hundred thirteen significant SNPs, 30 in leaves and 83 in pods had phenotypic variation explained (PVE) of 10% or greater. Fourteen SNPs (four from G19833 and ten from 5-593) with ≥10 PVE%, large SNP effect, and largest p-value for L* and H° pod exterior was identified on Pv01, Pv02, Pv03, and Pv08. More SNPs were associated with pod traits than with leaf traits. The pod interior did not exhibit colors produced by anthocyanins or flavonols which allowed the differentiation of potential candidate genes associated with chloroplast and photosynthetic activity compared to the pod exterior where candidate genes related to both flavonoids and photosynthesis affected color. Several SNPs were associated with known qualitative genes including the wax pod locus (y), persistent color (pc), purple pods (V), and two genes expressed in seeds but not previously reported to affect other plant tissues (B and J). An evaluation of significant SNPs within annotated genes found a number, within a 200 kb window, involved in both flavonoid and photosynthetic biosynthetic pathways.
Collapse
Affiliation(s)
- Burcu Celebioglu
- Department of Horticulture, Oregon State University, 4017 Ag & Life Science Bldg., Corvallis, OR 97331, USA;
| | - John P. Hart
- USDA-ARS, Tropical Agriculture Research Station (TARS), 2200 P. A. Campos Ave., Suite 201, Mayagüez, PR 00680, USA; (J.P.H.); (T.P.)
| | - Timothy Porch
- USDA-ARS, Tropical Agriculture Research Station (TARS), 2200 P. A. Campos Ave., Suite 201, Mayagüez, PR 00680, USA; (J.P.H.); (T.P.)
| | - Phillip Griffiths
- School of Integrated Plant Sciences, Horticulture Section, Cornell Agritech, 635 W. North St., Geneva, NY 14456, USA;
| | - James R. Myers
- Department of Horticulture, Oregon State University, 4017 Ag & Life Science Bldg., Corvallis, OR 97331, USA;
| |
Collapse
|
2
|
Liu C, Yang X, He Y, Chen Q, Huang Y, Yan Z, Liu D, Feng G. Fine mapping and characterisation of a PV-PUR mediating anthocyanin synthesis in snap bean ( Phaseolus vulgaris L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:15. [PMID: 37313298 PMCID: PMC10248652 DOI: 10.1007/s11032-023-01362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Anthocyanin makes snap bean (Phaseolus vulgaris L.) pods purple, which helps seed dispersal and protects against environmental stress. In this study, we characterised the snap bean purple mutant pv-pur, which has purple cotyledon, hypocotyl, stem, leaf vein, flower and pod tissues. Total anthocyanin, delphinidin and malvidin levels in mutant pods were significantly higher than in wild-type plants. We constructed two populations for fine mapping of the PV-PUR purple mutation gene, located in the 243.9-kb region of chromosome 06. We identified Phvul.006g018800.3, encoding F3'5'H, as a candidate gene for PV-PUR. Six single-base mutations occurred in the coding region of this gene, altering protein structure. PV-PUR and pv-pur genes were transferred into Arabidopsis, respectively. Compared with the wild-type, the leaf base and internode of T-PV-PUR plant were purple, and the phenotype of T-pv-pur plant remained unchanged, which verified the function of the mutant gene. The results demonstrated that PV-PUR is a crucial gene for anthocyanin biosynthesis in snap bean, resulting in purple colouration. The findings lay a foundation for future breeding and improvement of snap bean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01362-8.
Collapse
Affiliation(s)
- Chang Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Xiaoxu Yang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Yongheng He
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Qifu Chen
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Yucheng Huang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Zhishan Yan
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| | - Guojun Feng
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000 China
| |
Collapse
|
3
|
García-Fernández C, Jurado M, Campa A, Brezeanu C, Geffroy V, Bitocchi E, Papa R, Ferreira JJ. A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe. PLANTS 2022; 11:plants11050577. [PMID: 35270047 PMCID: PMC8912712 DOI: 10.3390/plants11050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Snap beans are a group of bean cultivars grown for their edible immature pods. The objective of this work was to characterize the diversity of pod phenotypes in a snap bean panel (SBP), comprising 311 lines collected in Europe, and establish a core set (Core-SBP) with the maximum diversity of pod phenotypes. Phenotyping of the SBP was carried out over two seasons based on 14 quantitative pod dimension traits along with three qualitative traits: pod color, seed coat color, and growth habit. Phenotypes were grouped into 54 classes using a hierarchical method, and a Core-SBP with one line per phenotype class was established. A further field-based evaluation of the Core-SBP revealed higher diversity index values than those obtained for the SBP. The Core-SBP was also genotyped using 24 breeder-friendly DNA markers tagging 21 genomic regions previously associated with pod trait control. Significant marker-trait associations were found for 11 of the 21 analyzed regions as well as the locus fin. The established Core-SBP was a first attempt to classify snap bean cultivars based on pod morphology and constituted a valuable source of characteristics for future breeding programs and genetic analysis.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Creola Brezeanu
- Stațiunea de Cercetare Dezvoltare Pentru Legumicultură, 600388 Bacău, Romania;
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France;
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (E.B.); (R.P.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (E.B.); (R.P.)
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
- Correspondence:
| |
Collapse
|