1
|
Nonaka S, Ezura H. Possibility of genome editing for melon breeding. BREEDING SCIENCE 2024; 74:47-58. [PMID: 39246433 PMCID: PMC11375426 DOI: 10.1270/jsbbs.23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 09/10/2024]
Abstract
Genome editing technologies are promising for conventional mutagenesis breeding, which takes a long time to remove unnecessary mutations through backcrossing and create new lines because they directly modify the target genes of elite strains. In particular, this technology has advantages for traits caused by the loss of function. Many efforts have been made to utilize this technique to introduce valuable features into crops, including maize, soybeans, and tomatoes. Several genome-edited crops have already been commercialized in the US and Japan. Melons are an important vegetable crop worldwide, produced and used in various areas. Therefore, many breeding efforts have been made to improve its fruit quality, resistance to plant diseases, and stress tolerance. Quantitative trait loci (QTL) analysis was performed, and various genes related to important traits were identified. Recently, several studies have shown that the CRISPR/Cas9 system can be applied to melons, resulting in its possible utilization as a breeding technique. Focusing on two productivity-related traits, disease resistance, and fruit quality, this review introduces the progress in genetics, examples of melon breeding through genome editing, improvements required for breeding applications, and the possibilities of genome editing in melon breeding.
Collapse
Affiliation(s)
- Satoko Nonaka
- Laboratory of Vegetable and Ornamental Horticulture, Institute of Life and Environmental Sciences and Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Laboratory of Vegetable and Ornamental Horticulture, Institute of Life and Environmental Sciences and Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Ling Y, Xiong X, Yang W, Liu B, Shen Y, Xu L, Lu F, Li M, Guo Y, Zhang X. Comparative Analysis of Transcriptomics and Metabolomics Reveals Defense Mechanisms in Melon Cultivars against Pseudoperonospora cubensis Infection. Int J Mol Sci 2023; 24:17552. [PMID: 38139381 PMCID: PMC10743968 DOI: 10.3390/ijms242417552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Melon (Cucumis melo L.) represents an agriculturally significant horticultural crop that is widely grown for its flavorful fruits. Downy mildew (DM), a pervasive foliar disease, poses a significant threat to global melon production. Although several quantitative trait loci related to DM resistance have been identified, the comprehensive genetic underpinnings of this resistance remain largely uncharted. In this study, we utilized integrative transcriptomics and metabolomics approaches to identify potential resistance-associated genes and delineate the strategies involved in the defense against DM in two melon cultivars: the resistant 'PI442177' ('K10-1') and the susceptible 'Huangdanzi' ('K10-9'), post-P. cubensis infection. Even in the absence of the pathogen, there were distinctive differentially expressed genes (DEGs) between 'K10-1' and 'K10-9'. When P. cubensis was infected, certain genes, including flavin-containing monooxygenase (FMO), receptor-like protein kinase FERONIA (FER), and the HD-ZIP transcription factor member, AtHB7, displayed pronounced expression differences between the cultivars. Notably, our data suggest that following P. cubensis infection, both cultivars suppressed flavonoid biosynthesis via the down-regulation of associated genes whilst concurrently promoting lignin production. The complex interplay of transcriptomic and metabolic responses elucidated by this study provides foundational insights into melon's defense mechanisms against DM. The robust resilience of 'K10-1' to DM is attributed to the synergistic interaction of its inherent transcriptomic and metabolic reactions.
Collapse
Affiliation(s)
- Yueming Ling
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Wenli Yang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
| | - Yue Shen
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830091, China
| | - Lirong Xu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830091, China
| | - Fuyuan Lu
- College of Agriculture, Shihezi University, Shihezi 832003, China;
| | - Meihua Li
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
| | - Yangdong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuejun Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.L.); (W.Y.); (B.L.); (Y.S.); (L.X.); (M.L.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya 572019, China
| |
Collapse
|