1
|
Ma X, Pang L, Shi F, Guan B. Ginsenoside Rk1 exerts protective effects of LPS-induced podocyte apoptosis and inflammation by inactivating JAK2/STAT3 and NF-κB pathways. Drug Chem Toxicol 2024:1-10. [PMID: 39734090 DOI: 10.1080/01480545.2024.2434900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024]
Abstract
Podocyte injury is a major biomarker of primary glomerular disease that leads to massive proteinuria and kidney failure. Ginsenoside Rk1, a substance derived from ginseng, has several pharmacological activities, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. In this study, our goal is to investigate the roles and mechanisms of ginsenoside Rk1 in podocyte injury and acute kidney injury (AKI). C57BL/6 mice were intraperitoneally injected with 10 mg/kg LPS to mimic AKI-like conditions in vivo. One hour after the LPS challenge, ginsenoside Rk1 (10 mg/kg or 20 mg/kg) or vehicle was orally administered into mice every 6 h until sacrifice at 24 h. Renal functions were assessed by measuring blood urea nitrogen and creatinine. Renal histological changes were examined by hematoxylin and eosin staining. The production of proinflammatory cytokines in kidney tissues was evaluated by RT-qPCR and western blotting. A conditionally immortalized mouse MPC-5 podocyte cell line was treated with LPS and ginsenoside Rk1. Viability and apoptosis of MPC-5 cells were estimated by CCK-8 and flow cytometry. Western blotting was also conducted to measure the protein levels of apoptosis-related and pathway-related genes. The results of abovementioned experiments revealed that Ginsenoside Rk1 ameliorated LPS-stimulated podocyte apoptosis in vitro and relieved renal dysfunctions and inflammatory response in LPS-induced AKI mice. Mechanistically, ginsenoside Rk1 inactivated the JAK2/STAT3 and NF-κB pathways in LPS-treated podocytes and mice. In conclusion, this study shows that Ginsenoside Rk1 attenuates LPS-induced renal dysfunctions and inflammatory response in mice and LPS-induced podocyte apoptosis in vitro through inactivating the NF-κB and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Xiaohong Ma
- Nephrology Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Linrong Pang
- Internal Medicine Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Feizhuang Shi
- Internal Medicine Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Binghe Guan
- Internal Medicine Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
2
|
Chen J, Wang X, He Q, Yang HC, Fogo AB, Harris RC. Inhibition of transcriptional coactivator YAP Impairs the expression and function of transcription factor WT1 in diabetic podocyte injury. Kidney Int 2024; 105:1200-1211. [PMID: 38423183 DOI: 10.1016/j.kint.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA.
| | - Xiaoyong Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qian He
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 2022; 25:105145. [PMID: 36176590 PMCID: PMC9513272 DOI: 10.1016/j.isci.2022.105145] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal diseases. DKD does not have efficacious treatment. The cGAS-STING pathway is activated in podocytes at the early stage of kidney dysfunction, which is associated with the activation of STING downstream effectors TBK1 and NF-κB but not IRF3. Lipotoxicity induces mitochondrial damage and mtDNA leakage to the cytosol through Bcl-2 associated X protein (BAX) in podocytes. BAX-mediated mtDNA cytosolic leakage can activate the cGAS-STING pathway in the absence of lipotoxicity and is sufficient to cause podocyte injury. Depletion of cytosolic mtDNA, genetic STING knockdown, or pharmacological inhibition of STING or TBK1 alleviates podocyte injury and improves renal functions in cultured podocytes or mouse models of diabetes and obesity. These results suggest that the mtDNA-cGAS-STING pathway promotes podocyte injury and is a potential therapeutic target for DKD or other obesity-related kidney diseases.
Collapse
|
4
|
Wang S, Zhang X, Wang Q, Wang R. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med (Berl) 2022; 100:1373-1386. [PMID: 36040515 DOI: 10.1007/s00109-022-02247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Podocyte protection by Angptl3 knockout via inhibiting ROS/GRP78 pathway in LPS-induced acute kidney injury. Int Immunopharmacol 2022; 105:108549. [DOI: 10.1016/j.intimp.2022.108549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 01/15/2023]
|
6
|
Long C, Lin Q, Mo J, Xiao Y, Xie Y. Hirudin attenuates puromycin aminonucleoside‐induced glomerular podocyte injury by inhibiting MAPK‐mediated endoplasmic reticulum stress. Drug Dev Res 2022; 83:1047-1056. [PMID: 35277865 DOI: 10.1002/ddr.21932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chunli Long
- College of Basic Medicine Guangxi University of Traditional Chinese Medicine Nanning China
| | - Qiang Lin
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| | - Junlin Mo
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yangping Xiao
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yongxiang Xie
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| |
Collapse
|
7
|
Thylur Puttalingaiah R. Role of Swiprosin-1/EFHD2 as a biomarker in the development of chronic diseases. Life Sci 2022; 297:120462. [PMID: 35276221 DOI: 10.1016/j.lfs.2022.120462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Swiprosin-1 or EFHD2, is a Ca2+ binding actin protein and its expression has been shown to be distinct in various cell types. The expression of swiprosin-1 is upregulated during the activation of immune cells, epithelial and endothelial cells. The expression of swiprosin-1 is regulated by diverse signaling pathways that are contingent upon the specific type of cells. The aim of this review is to summarize and provide an overview of the role of swiprosin-1 in pathophysiological conditions of cancers, cardiovascular diseases, diabetic nephropathy, neuropsychiatric diseases, and in the process of inflammation, immune response, and inflammatory diseases. Novel approaches for the targeting of swiprosin-1 as a biomarker in the early detection and prevention of various development of chronic diseases are also explored.
Collapse
Affiliation(s)
- Ramesh Thylur Puttalingaiah
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, Room 945-B1, New Orleans, LA 70112, USA..
| |
Collapse
|
8
|
Zhu L, Li Y, Xia F, Xue M, Wang Y, Jia D, Gao Y, Li L, Shi Y, Chen S, Xu G, Yuan C. H19: A vital long noncoding RNA in the treatment of diabetes and diabetic complications. Curr Pharm Des 2021; 28:1011-1018. [PMID: 34895118 DOI: 10.2174/1381612827666211210123959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing academic efforts have been made to explore the correlation of long noncoding RNAs (lncRNAs) with human diseases, particularly metabolic diseases like diabetes mellitus. Taking lncRNA H19 as an example, this review intends to reveal the functions and mechanism of lncRNA H19 in diabetes mellitus and diabetic complications. METHODS The research results associated with lncRNA H19 and diabetes mellitus are collected and summarized on PubMed. CONCLUSION LncRNA H19 is a potential instructive marker for the treatment of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
9
|
Imeri F, Stepanovska Tanturovska B, Schwalm S, Saha S, Zeng-Brouwers J, Pavenstädt H, Pfeilschifter J, Schaefer L, Huwiler A. Loss of sphingosine kinase 2 enhances Wilm's tumor suppressor gene 1 and nephrin expression in podocytes and protects from streptozotocin-induced podocytopathy and albuminuria in mice. Matrix Biol 2021; 98:32-48. [PMID: 34015468 DOI: 10.1016/j.matbio.2021.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor β (TGFβ) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern CH-3010, Switzerland
| | | | - Stephanie Schwalm
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Sarbari Saha
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Herrmann Pavenstädt
- Medizinische Klinik D, University Hospital Münster, Münster D-48149, Germany
| | - Josef Pfeilschifter
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany.
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern CH-3010, Switzerland.
| |
Collapse
|
10
|
Casagrande V, Iuliani G, Menini S, Pugliese G, Federici M, Menghini R. Restoration of renal TIMP3 levels via genetics and pharmacological approach prevents experimental diabetic nephropathy. Clin Transl Med 2021; 11:e305. [PMID: 33634991 PMCID: PMC7862169 DOI: 10.1002/ctm2.305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the major complications of diabetes, is characterized by albuminuria, glomerulosclerosis, and progressive loss of renal function. Loss of TIMP3, an Extracellular Matrix bound protein affecting both inflammation and fibrosis, is a hallmark of DN in human subjects and mouse models. METHODS This study was designed to provide evidences that the modulation of the system involving TIMP3 and its target A Disintegrin And Metalloproteinase 17 (ADAM17), may rescue kidney pathology in diabetic mice. Mice with cell-targeted overexpression of TIMP3 in myeloid cells (MacT3), podocyte-specific ADAM17 knockout mice (∆PodA17), and DBA/2J mice, were rendered diabetic at 8 weeks of age with a low-dose streptozotocin protocol. DBA/2J mice were administered new peptides based on the human TIMP3 N-terminal domain, specifically conjugated with G3C12, a carrier peptide highly selective and efficient for transport to the kidney. Twelve weeks after Streptozotocin injections, 24-hour albuminuria was determined by ELISA, kidney morphometry was analyzed by periodic acid-shift staining, and Real Time-PCR and western blot analysis were performed on mRNA and protein extracted from kidney cortex. RESULTS Our results showed that both genetic modifications and peptides treatment positively affect renal function and structure in diabetic mice, as indicated by a significant and consistent decline in albuminuria along with reduction in glomerular lesions, as indicated by reduced mesangial expansion and glomerular hypertrophy, decreased deposition of extracellular matrix in the mesangium, diminished protein expression of the NADPH oxidases 4 (NOX4), and the improvement of podocyte structural markers such as WT1, nephrin, and podocin. Moreover, the positive effects were exerted through a mechanism independent from glycemic control. CONCLUSIONS In diabetic mice the targeting of TIMP3 system improved kidney structure and function, representing a valid approach to develop new avenues to treat this severe complication of diabetes.
Collapse
Affiliation(s)
- Viviana Casagrande
- Departments of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
- Research Unit of Diabetes and Endocrine DiseasesFondazione IRCCS “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
| | - Giulia Iuliani
- Departments of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Stefano Menini
- Department of Clinical and Molecular Medicine“Sapienza” UniversityRomeItaly
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine“Sapienza” UniversityRomeItaly
| | - Massimo Federici
- Departments of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
- Center for AtherosclerosisDepartment of Medical Sciences Policlinico Tor Vergata UniversityRomeItaly
| | - Rossella Menghini
- Departments of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
11
|
Han J, Pang X, Zhang Y, Peng Z, Shi X, Xing Y. Hirudin Protects Against Kidney Damage in Streptozotocin-Induced Diabetic Nephropathy Rats by Inhibiting Inflammation via P38 MAPK/NF-κB Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3223-3234. [PMID: 32848363 PMCID: PMC7425656 DOI: 10.2147/dddt.s257613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Background Inflammation-induced podocyte apoptosis plays an important role in kidney injury during diabetic nephropathy (DN). Hirudin (HIR), a natural compound extracted from leeches, can inhibit inflammation. However, whether HIR can protect the kidneys against inflammation during DN is unknown. In the present study, we aimed to study the effects of HIR on kidney damage in a DN rat model and explore its anti-inflammatory properties. Methods A streptozotocin-induced DN rat model was generated, and HIR was administered subcutaneously. Immortal podocytes and primary peritoneal macrophages were used for vitro studies. Hematoxylin and eosin staining was used to evaluate renal pathological changes; quantitative polymerase chain reaction and immunoblotting were used to detect gene expression; and TUNEL staining was used to detect apoptotic cells. Results Our results showed that HIR protected against renal injury, as indicated by kidney weight/body weight, serum creatinine, renal pathological changes, blood urea nitrogen, and detection of urine proteins. Notably, HIR treatment reduced macrophage infiltration, pro-inflammatory cytokine expression, and podocyte apoptosis in the kidney tissues of DN rats. In vitro, high glucose (HG) induced the activation of M1 macrophages, which was accompanied by increased podocyte apoptosis. HIR could decrease HG-induced podocyte apoptosis and suppress pro-inflammatory cytokine expression in podocytes in vitro. This was achieved via inhibition of p38 MAPK/NF-κB activation in renal tissues and podocytes. Conclusion HIR could inhibit inflammation via the p38 MAPK/NF-κB pathway, prevent podocyte apoptosis, and protect against kidney damage in a DN rat model.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Zining Peng
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Yufeng Xing
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China.,Department of Nephropathy, The Second Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
12
|
Fayed A, Rahman Tohamy IA, Kahla H, Elsayed NM, El Ansary M, Saadi G. Urinary podocyte-associated mRNA profile in Egyptian patients with diabetic nephropathy. Diabetes Metab Syndr 2019; 13:2849-2854. [PMID: 31425946 DOI: 10.1016/j.dsx.2019.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We aimed to study the expression of podocyte-associated genes in urinary sediment and their relation to disease severity in type 2 diabetic Egyptian patients with diabetic nephropathy. METHOD ology: Sixty patients with type 2 diabetes mellitus were recruited in addition to twenty non diabetic healthy volunteers. Relative mRNA abundance of nephrin, podocalyxin, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined. RESULTS The urinary mRNA levels of all genes studied were significantly higher in diabetics compared with controls (p < 0.001), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and HbA1c. The expression of nephrin, podocalyxin, and podocin mRNA correlated with serum creatinine {(r = 0.397, p value = 0.002), (r = 0.431, p value = 0.001), (r = 0.433, p value = 0.001) respectively}. CONCLUSION The urinary mRNA profiles of nephrin, podocalyxin, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.
Collapse
Affiliation(s)
- Ahmed Fayed
- Nephrology unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt.
| | | | - Hala Kahla
- Endocrinology unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt
| | - Naglaa M Elsayed
- Endocrinology unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt
| | - Mervat El Ansary
- Clinical Pathology Department, School of Medicine, Cairo University, Egypt
| | - Gamal Saadi
- Nephrology unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt
| |
Collapse
|
13
|
Li X, Ma A, Liu K. Geniposide alleviates lipopolysaccharide-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1524-1532. [PMID: 30982359 DOI: 10.1080/21691401.2019.1601630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteinuria is one of the most important clinical features of nephrotic syndrome (NS). Injury of podocyte has been proved to contribute to the occurrence of proteinuria. This study explored the effects of geniposide (GEN) on lipopolysaccharide (LPS)-caused murine kidney podocyte MPC5 apoptosis and autophagy. Viability and apoptosis of MPC5 cells were respectively detected with the help of CCK-8 assay and Guava Nexin assay. 3-Methyladenine (3-MA) was used as an autophagy inhibitor, while rapamycin as autophagy activator. Si-Beclin-1 was transfected in MPC5 cells to down-regulate the expression of Beclin-1. We found that LPS stimulation significantly caused MPC5 cell viability reduction, apoptosis and autophagy (P < .05 or P < .01). GEN treatment remarkably alleviated the LPS-caused MPC5 cell viability reduction and apoptosis, but promoted cell autophagy (P < .05). Moreover, 3-MA incubation or si-Beclin-1 transfection notably weakened the effects of GEN on LPS-caused MPC5 cell apoptosis and autophagy (P < .05), while rapamycin had opposite effects (P < .05). Furthermore, GEN activated Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells (P < .05). In conclusion, this research verified the protective effects of GEN on podocytes damage. GEN alleviates LPS-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. Highlights: LPS causes podocyte MPC5 apoptosis and autophagy. GEN alleviates LPS-caused MPC5 cell apoptosis, but promotes cell autophagy. 3-MA or si-Beclin-1 weakens the effects of GEN on LPS-treated MPC5 cells. Rapamycin strengthens the effects of GEN on LPS-treated MPC5 cells. GEN activates Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells.
Collapse
Affiliation(s)
- Xia Li
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China.,b Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University , Jining , China
| | - Aijing Ma
- c Department of Nephrology , The Ninth People's Hospital of Chongqing , Chongqing , China
| | - Kun Liu
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
14
|
Ma F, Wu J, Jiang Z, Huang W, Jia Y, Sun W, Wu H. P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1272-1281. [PMID: 30959066 DOI: 10.1016/j.bbamcr.2019.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end stage renal disease, posing a severe threat to public health. Previous studies reported the protective role of sirtuin 1 (SIRT1) in DN, encouraging the investigation of more potent and specific SIRT1 activators. SRT2104 is a novel, first-in-class, highly selective small-molecule activator of SIRT1, with its effect and mechanism unknown on DN. To this end, streptozotocin-induced C57BL/6 wild-type (WT) diabetic mice were treated with SRT2104, for 24 weeks. To determine whether SRT2104 acted through inhibition of P53 - a substrate of SIRT1, the P53 activator nutlin3a was administered to the WT diabetic mice in the presence of SRT2104. In order to test whether nuclear factor erythroid 2-related factor 2 (NRF2) - the master of cellular antioxidants - mediated SIRT1 and P53's actions, WT and Nrf2 gene knockout (KO) diabetic mice were treated with SRT2104 or the P53 inhibitor pifithrin-α (PFT-α). In the WT mice, SRT2104 enhanced renal SIRT1 expression and activity, deacetylated P53, and activated NRF2 antioxidant signaling, providing remarkable protection against the DM-induced renal oxidative stress, inflammation, fibrosis, glomerular remodeling and albuminuria. These effects were completely abolished in the presence of nutlin3a. Deletion of the Nrf2 gene completely abrogated the efficacies of SRT2104 and PFT-α in elevating antioxidants and ameliorating DN, despite their abilities to activate SIRT1 and inhibit P53 in the Nrf2 KO mice. The present study reports the beneficial effects of SRT2104 on DN, uncovering a SIRT1/P53/NRF2 pathway that modulates the pathogenesis of DN.
Collapse
Affiliation(s)
- Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, 71 Xinmin St., Changchun 130021, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Ln., Lawrenceville, GA 30043, USA
| | - Ye Jia
- Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China.
| | - Hao Wu
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Fan W, Peng Y, Liang Z, Yang Y, Zhang J. A negative feedback loop of H19/miR‐675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 2019; 234:17505-17513. [PMID: 30815865 DOI: 10.1002/jcp.28373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Affiliation(s)
- WenXing Fan
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
- Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - YunZhu Peng
- Department of Cardiology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Zhang Liang
- Department of Science and Technology Kunming Medical University Kunming Yunnan China
| | - YueNa Yang
- Teaching Quality Monitoring and Assessment Center, Kunming Medical University Kunming Yunnan China
| | - Jing Zhang
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
16
|
Wu J, Liang W, Tian Y, Ma F, Huang W, Jia Y, Jiang Z, Wu H. Inhibition of P53/miR-34a improves diabetic endothelial dysfunction via activation of SIRT1. J Cell Mol Med 2019; 23:3538-3548. [PMID: 30793480 PMCID: PMC6484332 DOI: 10.1111/jcmm.14253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or P53‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or P53‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or Sirt1‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.
Collapse
Affiliation(s)
- Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhao Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| | - Yueli Tian
- Department of Gastroenteric Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Wu
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Qiao C, Ye W, Li S, Wang H, Ding X. Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors. Mol Cell Endocrinol 2018; 473:146-155. [PMID: 29373840 DOI: 10.1016/j.mce.2018.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis in glomerular lesions has been found to have a dominant role in the progression of diabetic nephropathy. The present research aimed to explore the beneficial effect of icariin on diabetic podocytes by interfering in the process of apoptosis. Podocyte apoptosis was significantly exacerbated after high glucose treatment, with the level of reactive oxygen species (ROS) increasing simultaneously. Here, we demonstrated that icariin, which is a G protein-coupled estrogen receptor 1 (GPER) agonist, inhibited podocyte apoptosis by reducing ROS, maintaining the integrity of mitochondrial membranes. Moreover, the stabilization of mitochondria by icariin was reversed when GPER was knocked down in podocytes. Meanwhile, icariin inhibited the caspase cascade in podocyte apoptosis by promoting Bcl-2 expression and mitochondrial translocation. The above findings at least partly elucidated the mechanism by which icariin stabilized podocytes by inducing the mitochondrial Bcl-2 translocation and therefore preventing downstream apoptosis.
Collapse
Affiliation(s)
- Chen Qiao
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Wenjuan Ye
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Sai Li
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Hui Wang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Xuansheng Ding
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.
| |
Collapse
|
18
|
MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1034-1045. [PMID: 29704532 DOI: 10.1016/j.bbamcr.2018.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.
Collapse
|
19
|
Wu H, Wu J, Zhou S, Huang W, Li Y, Zhang H, Wang J, Jia Y. SRT2104 attenuates diabetes-induced aortic endothelial dysfunction via inhibition of P53. J Endocrinol 2018; 237:1-14. [PMID: 29371235 DOI: 10.1530/joe-17-0672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction contributes to diabetic macrovascular complications. Sirtuin 1 (SIRT1) protects against diabetic vasculopathy. SRT2104 is a novel SIRT1 activator and was not previously studied for its effects on diabetes-induced aortic endothelial dysfunction. Additionally, whether or to what extent deacetylation of P53, a substrate of SIRT1, is required for the effects of SIRT1 activation was unclear, given the fact that SIRT1 has multiple targets. Moreover, little was known about the pathogenic role of P53 in diabetes-induced aortic injury. To these ends, diabetes was induced by streptozotocin in C57BL/6 mice. The diabetic mice developed enhanced aortic contractility, oxidative stress, inflammation, P53 hyperacetylation and a remarkable decrease in SIRT1 protein, the effects of which were rescued by SRT2104. In HG-treated endothelial cells (ECs), P53 siRNA and SRT2104 produced similar effects on the induction of SIRT1 and the inhibition of P53 acetylation, oxidative stress and inflammation. Interestingly, SRT2104 failed to further enhance these effects in the presence of P53 siRNA. Moreover, P53 activation by nutlin3a completely abolished SRT2104's protection against HG-induced oxidative stress and inflammation. Further, forced activation of P53 by nutlin3a increased aortic contractility in the healthy mice and generated endothelial oxidative stress and inflammation in both the normal glucose-cultured ECs and the aortas of the healthy mice. Collectively, the present study demonstrates that P53 deacetylation predominantly mediates SRT2104's protection against diabetes-induced aortic endothelial dysfunction and highlights the pathogenic role of P53 in aortic endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Down-Regulation/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Heterocyclic Compounds, 2-Ring/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Hao Wu
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
- The '973' National Basic Research Program of ChinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Junduo Wu
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shengzhu Zhou
- Department of AnesthesiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wenlin Huang
- School of Science and TechnologyGeorgia Gwinnett College, Lawrenceville, Georgia, USA
| | - Ying Li
- Department of DermatologyAffiliated Hospital of Beihua University, Jilin, Jilin, People's Republic of China
| | - Huan Zhang
- Operating TheatreChina-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Junnan Wang
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ye Jia
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
20
|
Delic Jukic IK, Kostic S, Filipovic N, Gudelj Ensor L, Ivandic M, Dukic JJ, Vitlov Uljevic M, Ferhatovic Hamzic L, Puljak L, Vukojevic K. Changes in expression of special AT-rich sequence binding protein 1 and phosphatase and tensin homologue in kidneys of diabetic rats during ageing. Nephrol Dial Transplant 2018; 33:1734-1741. [DOI: 10.1093/ndt/gfy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Sandra Kostic
- Laboratory for Microscopy, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Natalija Filipovic
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Larissa Gudelj Ensor
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Marijeta Ivandic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Jozefina Josipa Dukic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Marija Vitlov Uljevic
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Lejla Ferhatovic Hamzic
- Laboratory for Pain Research, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Livia Puljak
- Laboratory for Pain Research, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
21
|
Wang J, Xu Z, Chen B, Zheng S, Xia P, Cai Y. The role of sirolimus in proteinuria in diabetic nephropathy rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1339-1344. [PMID: 29238469 PMCID: PMC5722994 DOI: 10.22038/ijbms.2017.9618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective(s): The aim of this study was to observe the impact of sirolimus on proteinuria in streptozotocin (STZ) induced diabetic rats. Materials and Methods: Rats were given a single injection of STZ to induce diabetic rat model. Rats’ 24 hr urine was collected to test, urinary and the kidney tissues were harvested at the 8th and 20th weeks, respectively. Podocyte morphological changes were examined by electron microscopy and the ZO-1, podocin expressions in kidneys were detected by immunohistochemistry; the protein levels of Raptor and pS6 were measured by Western blot assay. Results: In the early stage of diabetic nephropathy (DN), sirolimus reduced the proteinuria significantly (P<0.05); but in the advanced stage of DN, sirolimus worsened proteinuria (P<0.05). Electron microscopy test suggested that sirolimus could reduce the injury of podocyte at the early DN, but increased the injury at the late DN podocyte. Immunohistochemistry results indicated that sirolimus increased the expressions of podocin and ZO-1 at the early DN (P<0.05), but reduced the expressions of ZO-1 and podocin (P<0.05) at the advanced DN. In the different periods of DN, the expression levels of Raptor and pS6 in sirolimus-treated groups were significantly lower than in the DN control groups (P<0.05). Conclusion: Sirolimus can reduce proteinuria and alleviate the early DN podocyte injury in diabetic rat model by inhibiting the activity of mTORC1; but in the advanced stage of DN, sirolimus can increase podocyte injury and urine protein level.
Collapse
Affiliation(s)
- JinJun Wang
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - ZiQiang Xu
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - BiCheng Chen
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - ShaoLing Zheng
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Peng Xia
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong Cai
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
22
|
LY333531, a PKCβ inhibitor, attenuates glomerular endothelial cell apoptosis in the early stage of mouse diabetic nephropathy via down-regulating swiprosin-1. Acta Pharmacol Sin 2017; 38:1009-1023. [PMID: 28414198 DOI: 10.1038/aps.2016.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
Glomerular endothelial cell (GEC) injury plays an important role in the early stage of diabetic nephropathy (DN). Previous studies show that a PKCβ inhibitor is effective for treating DN. In the current study we further explored the effects and molecular mechanisms of PKCβ inhibitors on GEC apoptosis in DN in streptozotocin-induced diabetic mice in vivo and high glucose- or PMA-treated human renal glomerular endothelial cells (HRGECs) in vitro. In the diabetic mice, hyperglycemia caused aggravated nephropathy and GEC apoptosis accompanied by significantly increased expression of swiprosin-1, a potentally pro-apoptotic protein. Administration of LY333531 (1 mg·kg-1·d-1 for 8 weeks) significantly attenuated both GEC apoptosis and swiprosin-1 upregulation in the diabetic mice. Similar results were observed in high glucose- or PMA-treated HRGECs in vitro. The pro-apoptotic role of swiprosin-1 was further examined using HRGECs treated with lentivirus mediating RNA interference or over-expression and swiprosin-1-knockout mice. Over-expression of swiprosin-1 in HRGECs resulted in increases in apoptosis and in caspase-9, caspase-3 and Bax expression. In contrast, knockdown of swiprosin-1 attenuated high glucose- or PMA-induced HRGECs apoptosis. Furthermore, over-expression of swiprosin-1 promoted interaction between swiprosin-1 and caspase-9 and increased the formation of apoptosomes. In diabetic swiprosin-1-/- mice, the kidney/body weight, urinary albumin, glomerular hypertrophy, mitochondrial apoptotic-associated proteins and GEC apoptosis were significantly attenuated as compared with those in diabetic swiprosin-1+/+ mice. These results demonstrate that swiprosin-1 is up-regulated by PKCβ in the early stage of DN, and that PKCβ facilitates GEC apoptosis through the mitochondrial-dependent pathway.
Collapse
|
23
|
Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS. PLK2 Plays an Essential Role in High D-Glucose-Induced Apoptosis, ROS Generation and Inflammation in Podocytes. Sci Rep 2017; 7:4261. [PMID: 28655909 PMCID: PMC5487358 DOI: 10.1038/s41598-017-00686-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/08/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of hyperglycemia. Currently, there is no effective therapeutic intervention for DKD. In this study, we sought to provide a set of gene profile in diabetic kidneys. We identified 338 genes altered in diabetes-induced DKD glomeruli, and PLK2 exhibited the most dramatic change. Gene set enrichment analysis (GSEA) indicated multiple signaling pathways are involved DKD pathogenesis. Here, we investigated whether PLK2 contributes to podocyte dysfunction, a characteristic change in the development of DKD. High D-glucose (HDG) significantly increased PLK2 expression in mouse podocytes. Suppressing PLK2 attenuated HDG-induced apoptosis and inflammatory responses both in vitro and in vivo. NAC, an antioxidant reagent, rescued HDG and PLK2 overexpression-induced kidney injuries. In summary, we demonstrated that silencing PLK2 attenuates HDG-induced podocyte apoptosis and inflammation, which may serve as a future therapeutic target in DKD.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Ping-Ping Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Tian-Lun Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Xiao-Xu Zheng
- Department of Medicine, the George Washington University, Washington, DC20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|
24
|
Li TX, Mao JH, Huang L, Fu HD, Chen SH, Liu AM, Liang YQ. Beneficial effects of Huaiqihuang on hyperglycemia-induced MPC5 podocyte dysfunction through the suppression of mitochondrial dysfunction and endoplasmic reticulum stress. Mol Med Rep 2017. [PMID: 28627684 DOI: 10.3892/mmr.2017.6753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was performed to investigate the effect of Huaiqihuang (HQH) on hyperglycemia (HG)-induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress in MPC5 podocytes. The effects of HQH and HG on cell viability were assessed using an MTT assay. mRNA and protein expression levels were evaluated using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was assessed using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, whereas reactive oxygen species production and alterations in mitochondrial membrane potential were assessed using flow cytometry. DNA damage was evaluated using a comet assay. The results demonstrated that treatment of podocytes with HQH markedly suppressed the HG‑induced generation of reactive oxygen species. HQH also significantly improved mitochondrial membrane potential in podocytes exposed to HG. When the podocytes were treated with HG, Ca2+ levels were significantly increased, compared with those in the control group, whereas treatment of the podocytes with HQH significantly reversed the HG‑induced upregulation of Ca2+ secretion. Treatment of the podocytes with HQH significantly reversed the HG‑induced upregulation of glucose‑related protein 78 (GRP78) and C/EBP‑homologous protein, which were used as indicators of ER stress. Furthermore, GRP78 loss‑of‑function attenuated HG‑induced podocyte dysfunction, including cell apoptosis and DNA damage. In conclusion, beneficial effects of HQH on HG‑induced MPC5 podocyte dysfunction were observed, and occurred through the suppression of mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Ting-Xia Li
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian-Hua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Lei Huang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Hai-Dong Fu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shuo-Hui Chen
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ai-Min Liu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yu-Qin Liang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
25
|
Yuan H, Zhang X, Zheng W, Zhou H, Zhang BY, Zhao D. Minocycline Attenuates Kidney Injury in a Rat Model of Streptozotocin-Induced Diabetic Nephropathy. Biol Pharm Bull 2017; 39:1231-7. [PMID: 27476934 DOI: 10.1248/bpb.b15-00594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of minocycline on the development of diabetic nephropathy (DN) in streptozotocin (STZ) induced diabetic rats were evaluated in this study. The diabetes rats with DN were induced by STZ (55 mg/kg) injection. The experiment included 5 groups 1) normal, 2) normal plus minocycline for 16 weeks, 3) DN plus vehicle, 4) DN plus minocycline 16 weeks and 5) DN plus minocycline for 8 weeks. The pathological changes were analyzed by hematoxylin and eosin (H&E) staining and the apoptotic cells were stained by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. The mRNA expression of caspase-3, Bax and Bcl-2 in the kidney tissues was detected by quantitative RT-PCR. The biochemical parameters of blood and urine were determined by biochemical analyzer. Treatment with minocycline reduced the urine volume, 24-h urine protein, serum creatinine (Scr), blood urea nitrogen (BUN) but not blood alanine aminotransferase (ALT) in the DN rats. Furthermore, treatment with minocycline improved the pathological score of STZ-injured kidney and reduced the numbers of apoptotic cells in the kidney of DN rats. Moreover, minocycline mitigated the expression of caspase-3 and Bax mRNA, but increased Bcl-2 expression in the kidney of DN rats. These data indicated that minocycline improved the STZ-induced kidney damages, at least partially by protection form long-term hyperglycemia-induced kidney cell apoptosis.
Collapse
|
26
|
Katary MM, Pye C, Elmarakby AA. Meloxicam fails to augment the reno-protective effects of soluble epoxide hydrolase inhibition in streptozotocin-induced diabetic rats via increased 20-HETE levels. Prostaglandins Other Lipid Mediat 2016; 132:3-11. [PMID: 27596333 DOI: 10.1016/j.prostaglandins.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023]
Abstract
The pro-inflammatory cyclooxygenase (COX)-derived prostaglandins and the anti-inflammatory cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of renal injury. The current study examined whether COX inhibition augments the reno-protective effects of increased EETs levels via inhibiting EETs degradation by soluble epoxide hydrolase (sEH) in diabetic rats. Streptozotocin (50mg/kg, i.v) was used to induce diabetes in male Sprague Dawley rats. Rats were then divided into 5 groups (n=6-8); control non diabetic, diabetic, diabetic treated with the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), diabetic treated with the COX inhibitor meloxicam and diabetic treated with meloxicam plus t-AUCB for 2 months. Glomerular albumin permeability and urinary albumin and nephrin excretion levels were significantly elevated in diabetic rats together with decreased glomerular α3 integrin and nephrin expression levels. Inhibition of sEH reduced glomerular albumin permeability, albumin and nephrin excretion levels and restored the decrease in glomerular α3 integrin and nephrin expression in diabetic rats. Meloxicam failed to reduce renal injury or even to synergize the reno-protective effects of sEH inhibition in diabetic rats. Furthermore, inhibition of sEH reduced the elevation in renal collagen deposition and urinary MCP-1 excretion levels together with a reduction in the number of renal TUNEL positive cells in diabetic vs. control rats (P<0.05). Meloxicam did not reduce renal inflammation or apoptosis in diabetic rats or even exacerbate the anti-inflammatory and anti-apoptotic effects of sEH inhibition. Renal 20-hydroxyeicosatetranoic acid (20-HETE) levels were elevated in diabetic rats and meloxicam further exacerbated this elevation. In conclusion, our study suggests that inhibition of COX failed to provide renal protection or to augment the reno-protective effects of sEH inhibition in diabetic rats, at least in part, via increased inflammatory 20-HETE levels.
Collapse
Affiliation(s)
- Mohamed M Katary
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States; Department of Pharmacology, Faculty of Pharmacy, Damanhur University, Egypt
| | - Chelsey Pye
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States
| | - Ahmed A Elmarakby
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States.
| |
Collapse
|
27
|
Abstract
Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.
Collapse
|
28
|
He Y, Xu Z, Fu H, Chen B, Wang S, Chen B, Zhou M, Cai Y. Combined Microencapsulated Islet Transplantation and Revascularization of Aortorenal Bypass in a Diabetic Nephropathy Rat Model. J Diabetes Res 2016; 2016:9706321. [PMID: 27119088 PMCID: PMC4826923 DOI: 10.1155/2016/9706321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/08/2016] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Revascularization of aortorenal bypass is a preferred technique for renal artery stenosis (RAS) in diabetic nephropathy (DN) patients. Restenosis of graft vessels also should be considered in patients lacking good control of blood glucose. In this study, we explored a combined strategy to prevent the recurrence of RAS in the DN rat model. METHODS A model of DN was established by intraperitoneal injection of streptozotocin. Rats were divided into 4 groups: SR group, MIT group, Com group, and the untreated group. The levels of blood glucose and urine protein were measured, and changes in renal pathology were observed. The expression of monocyte chemoattractant protein-1 (MCP-1) in graft vessels was assessed by immunohistochemical staining. Histopathological staining was performed to assess the pathological changes of glomeruli and tubules. RESULTS The levels of urine protein and the expression of MCP-1 in graft vessels were decreased after islet transplantation. The injury of glomerular basement membrane and podocytes was significantly ameliorated. CONCLUSIONS The combined strategy of revascularization and microencapsulated islet transplantation had multiple protective effects on diabetic nephropathy, including preventing atherosclerosis in the graft vessels and alleviating injury to the glomerular filtration barrier. This combined strategy may be helpful for DN patients with RAS.
Collapse
Affiliation(s)
- Yunqiang He
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziqiang Xu
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongxing Fu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bin Chen
- Department of B-Mode Ultrasound, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Silu Wang
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bicheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengtao Zhou
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- *Mengtao Zhou: and
| | - Yong Cai
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- *Yong Cai:
| |
Collapse
|
29
|
Semiautomated quantitative image analysis of glomerular immunohistochemistry markers desmin, vimentin, podocin, synaptopodin and WT-1 in acute and chronic rat kidney disease models. Histochem Cell Biol 2015; 145:315-26. [DOI: 10.1007/s00418-015-1391-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/24/2022]
|
30
|
Early-onset diabetic E1-DN mice develop albuminuria and glomerular injury typical of diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:102969. [PMID: 26000279 PMCID: PMC4426768 DOI: 10.1155/2015/102969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER) at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.
Collapse
|
31
|
Li G, Li CX, Xia M, Ritter JK, Gehr TWB, Boini K, Li PL. Enhanced epithelial-to-mesenchymal transition associated with lysosome dysfunction in podocytes: role of p62/Sequestosome 1 as a signaling hub. Cell Physiol Biochem 2015; 35:1773-86. [PMID: 25832774 DOI: 10.1159/000373989] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Autophagy is of importance in the regulation of cell differentiation and senescence in podocytes. It is possible that derangement of autophagy under different pathological conditions activates or enhances Epithelial-to-Mesenchymal Transition (EMT) in podocytes, resulting in glomerular sclerosis. To test this hypothesis, the present study produced lysosome dysfunction by inhibition of the vacuolar H(+)-ATPase (V-ATPase) to test whether deficiency of autophagic flux leads to enhancement of EMT in podocytes. METHODS AND RESULTS By Western blot and confocal analysis, lysosome inhibition using a V-ATPase inhibitor or its siRNA was found to markedly decreases the epithelial markers (P-cadherin and ZO-1) and increases the mesenchymal markers (FSP-1 and α-SMA). This enhancement was accompanied by deficient autophagic flux, as demonstrated by marked increases in LC3B-II and p62/Sequestosome 1. However, inhibition of autophagosome formation using spaudin-1 significantly attenuated both enhancement of EMT and deficiency of autophagic flux. To explore the mechanisms by which deficient autophagic flux enhances EMT, we tested the role of accumulated p62 as a signal hub in this process. Neither the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear kappa-light-chain-enhancer pathways of p62 contributed to enhanced EMT. However, inhibition of cyclin-dependent kinase 1 (CDK1) activity reduced the phosphorylation of p62 and enhanced EMT in podocytes similar to lysosome dysfunction. CONCLUSION The lack of phosphorylated p62 leads to a faster exit from cell mitosis, enhanced EMT associated with lysosome dysfunction may be attributed to accumulation of p62 and associated reduction of p62 phosphorylation.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kong L, Wu H, Zhou W, Luo M, Tan Y, Miao L, Cai L. Sirtuin 1: A Target for Kidney Diseases. Mol Med 2015; 21:87-97. [PMID: 25587857 PMCID: PMC4461580 DOI: 10.2119/molmed.2014.00211] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
Sirtuin 1 (SIRT1) is an evolutionarily conserved NAD(+)-dependent histone deacetylase that is necessary for caloric restriction-related lifespan extension. SIRT1, as an intracellular energy sensor, detects the concentration of intracellular NAD(+) and uses this information to adapt cellular energy output to cellular energy requirements. Previous studies on SIRT1 have confirmed its beneficial effects on cellular immunity to oxidative stress, reduction of fibrosis, suppression of inflammation, inhibition of apoptosis, regulation of metabolism, induction of autophagy and regulation of blood pressure. All of the above biological processes are involved in the pathogenesis of kidney diseases. Therefore, the activation of SIRT1 may become a therapeutic target to improve the clinical outcome of kidney diseases. In this review, we give an overview of SIRT1 and its molecular targets as well as SIRT1-modulated biological processes, with a particular focus on the role of SIRT1 in kidney diseases.
Collapse
Affiliation(s)
- Lili Kong
- Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Hao Wu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Wenhua Zhou
- Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Yi Tan
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Lining Miao
- Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
33
|
Maezawa Y, Takemoto M, Yokote K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig 2014; 6:3-15. [PMID: 25621126 PMCID: PMC4296695 DOI: 10.1111/jdi.12255] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine Chiba, Japan ; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital Chiba, Japan
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine Chiba, Japan ; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital Chiba, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine Chiba, Japan ; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital Chiba, Japan
| |
Collapse
|
34
|
Gao P, Meng XF, Su H, He FF, Chen S, Tang H, Tian XJ, Fan D, Wang YM, Liu JS, Zhu ZH, Zhang C. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2448-60. [PMID: 25017793 DOI: 10.1016/j.bbamcr.2014.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/30/2022]
Abstract
Numerous studies have shown that the NALP3 inflammasome plays an important role in various immune and inflammatory diseases. However, whether the NALP3 inflammasome is involved in the pathogenesis of diabetic nephropathy (DN) is unclear. In our study, we confirmed that high glucose (HG) concentrations induced NALP3 inflammasome activation both in vivo and in vitro. Blocking NALP3 inflammasome activation by NALP3/ASC shRNA and caspase-1 inhibition prevented IL-1β production and eventually attenuated podocyte and glomerular injury under HG conditions. We also found that thioredoxin (TRX)-interacting protein (TXNIP), which is a pro-oxidative stress and pro-inflammatory factor, activated NALP3 inflammasome by interacting with NALP3 in HG-exposed podocytes. Knocking down TXNIP impeded NALP3 inflammasome activation and alleviated podocyte injury caused by HG. In summary, the NALP3 inflammasome mediates podocyte and glomerular injury in DN, moreover, TXNIP participates in the formation and activation of the NALP3 inflammasome in podocytes during DN, which represents a novel mechanism of podocyte and glomerular injury under diabetic conditions.
Collapse
Affiliation(s)
- Pan Gao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu-Juan Tian
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Fan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian-She Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhong-Hua Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Brosius FC, Coward RJ. Podocytes, signaling pathways, and vascular factors in diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:304-10. [PMID: 24780459 DOI: 10.1053/j.ackd.2014.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
Alterations and injury to glomerular podocytes play a key role in the initiation and progression of diabetic kidney disease (DKD). Multiple factors in diabetes cause abnormalities in podocyte signaling that lead to podocyte foot process effacement, hypertrophy, detachment, loss, and death. Alterations in insulin action and mammalian target of rapamycin activation have been well documented to lead to pathology. Reduced insulin action directly leads to albuminuria, increased glomerular matrix accumulation, thickening of the glomerular basement membrane, podocyte apoptosis, and glomerulosclerosis. In addition, podocytes generate factors that alter signaling in other glomerular cells. Prominent among these is vascular endothelial growth factor-A, which maintains glomerular endothelium viability but causes endothelial cell pathology when generated at too high a level. Finally, circulating vascular factors (eg, activated protein C) have a profound effect on podocyte stability and survival. This cytoprotective factor is critical for podocyte health, and its deficiency promotes podocyte injury and apoptosis. Thus, the podocyte sits in the center of a network of paracrine and hormonal signaling systems that in health keep the podocyte adaptable and viable, but in diabetes they can lead to pathologic changes, detachment, and death.
Collapse
|
36
|
Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal 2014; 26:1774-82. [PMID: 24726896 DOI: 10.1016/j.cellsig.2014.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/06/2014] [Indexed: 12/21/2022]
Abstract
Podocyte apoptosis induced by hyperglycemia is considered a critical factor in the development of diabetic nephropathy. Recent studies have implicated Notch signaling in podocyte apoptosis; however, its regulatory mechanisms are not fully understood. In this study, we found that high-glucose treatment increased Notch1 and Jagged-1 expression, the transcriptional activity of Hes, and podocyte apoptosis, and decreased the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in rat podocytes. Transient transfection of CARM1 reversed high-glucose-induced Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. Moreover, the silencing of CARM1 using siRNA increased Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. However, the Glu(266)-mediated enzymatic activity of CARM1 was not necessary for Notch signaling activation and podocyte apoptosis. Here, we demonstrate that AMP-activated protein kinase alpha (AMPKα) and cannabinoid receptor 1 (CB1R) are regulated by CARM1 and that high-glucose-induced podocyte apoptosis is mediated by a CARM1-AMPKα-Notch1-CB1R signaling axis. We also show that high-glucose-induced CARM1 downregulation is due to ubiquitination-dependent CARM1 degradation. Finally, we demonstrate that CARM1 expression in podocytes was diminished in rats with streptozotocin-induced diabetes compared to vehicle-treated rats. Together, our data provide evidence that ubiquitination-dependent CARM1 degradation in podocytes in diabetes promotes podocyte apoptosis via Notch1 activation. Strategies to preserve CARM1 expression or reduce the enzymatic activity of a ubiquitin ligase specific for CARM1 could be used to prevent podocyte loss in diabetic nephropathy.
Collapse
|
37
|
PTGER1 deletion attenuates renal injury in diabetic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1789-1802. [PMID: 24113456 DOI: 10.1016/j.ajpath.2013.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
Abstract
We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.
Collapse
|
38
|
Berman S, Abu Hamad R, Efrati S. Mesangial cells are responsible for orchestrating the renal podocytes injury in the context of malignant hypertension. Nephrology (Carlton) 2013; 18:292-8. [PMID: 23445449 DOI: 10.1111/nep.12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 12/21/2022]
Abstract
AIM Two populations of renal cells fully possess functional contractile cell apparatus: mesangial cells and podocytes. Previous studies demonstrated that in the context of malignant hypertension overproduction of Angiotensin-II by the contracting mesangial cells aggravated hypercellularity and apoptosis of adjacent cell populations. The role of podocytes in pathogenesis of malignant hypertension is unclear. We investigated responsiveness of normal vs. hyperglycaemic podocytes to pressure in a model of malignant hypertension. METHODS Rat renal podocytes and mesangial cells were subjected to high hydrostatic pressure, using an in vitro model of malignant hypertension. Part of them was pre-exposed to hyperglycaemic medium. Alternatively, the cells were cultured in conditioned medium collected from mesangial cells pre-exposed to pressure. RESULTS Angiotensin-II was significantly increased in normoglycaemic mesangial cells subjected to pressure, triggering enhanced proliferation and apoptosis. No augmented Angiotensin-II, proliferation or apoptosis were evident in pressure-exposed normoglycaemic podocytes. In hyperglycaemic mesangial cells, but not podocytes, basal Angiotensin-II and apoptosis were augmented, along with abrogated proliferation. Challenge with exogenous Angiotensin-II or Angiotensin-II-containing conditioned medium, induced apoptosis both in podocytes and mesangial cells. CONCLUSIONS 1. Unlike mesangial cells, podocytes do not respond to high pressure or hyperglycaemia per se. Resultantly, neither high pressure nor hyperglycaemia, trigger apoptosis of podocytes in vitro. However, surplus of Angiotensin-II, amply produced in vivo by the adjacent mesangial cells, would seem to be sufficient for initiating apoptosis of both mesangial cells and podocytes. 2. Hyperglycaemia abrogates cell replication. Resultantly, in diabetic patients regeneration of renal tissue damaged by the incidence of malignant hypertension may become compromised or completely lost.
Collapse
Affiliation(s)
- Sylvia Berman
- Research and Development Unit, Assaf Harofeh Medical Center, Zerifin, Israel
| | | | | |
Collapse
|
39
|
Zhang L, Li K, Liu X, Li D, Luo C, Fu B, Cui S, Zhu F, Zhao RC, Chen X. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cells Dev 2013; 22:3074-86. [PMID: 23844841 DOI: 10.1089/scd.2013.0142] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can alleviate acute kidney injury and promote kidney cell regeneration and repair. To investigate the role of ASCs in diabetic nephropathy (DN), Sprague-Dawley rats were made diabetic by intraperitoneal injection of streptozotocin (STZ) after uninephrectomy. After 12 weeks, proteinuria was well established. Five times of 5×10(6) human ASCs repeatedly injected through a tail vein at 4 weekly intervals. A reduction in proteinuria was not observed in diabetic rats until 24 weeks. However, urinary protein excretion was significantly suppressed at 28 weeks and persisted up to 32 weeks after STZ treatment. ASC treatment significantly attenuated glomerulus hypertrophy and tubular interstitial injury, and led to the downregulation of WT-1 and synaptopodin expression. CFSE labeled ASCs were injected into DN rats via the tail vein. Within 24 h after injection, the cells were detected in lung, spleen, and peritubular regions, but rarely in pancreas. Human Alu gene expression was detected in lung and spleen up to 4 weeks after ASCs injection. ASC treatment did not improve hyperglycemia or pancreatic damage. In vitro, recombinant human glial cell line-derived neurotrophic factor (GDNF) prevented podocyte injury by high glucose similarly to ASC-conditioned medium. After blocking GDNF in ASC-CM with neutralizing antibody, the therapeutic effect of ASC-CM was significantly decreased. ASCs cocultured with podocytes restored the downregulation of synaptopodin expression, which was weakened by GDNF-RNA interfering. These findings indicate that repeated intravenous ASC can reduce diabetic kidney damage in rats even at the progressive stage, and promote podocyte recovery via GDNF secretion.
Collapse
Affiliation(s)
- Li Zhang
- 1 State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College , Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Khazim K, Gorin Y, Cavaglieri RC, Abboud HE, Fanti P. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am J Physiol Renal Physiol 2013; 305:F691-700. [PMID: 23804455 DOI: 10.1152/ajprenal.00028.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Podocyte injury, a major contributor to the pathogenesis of diabetic nephropathy, is caused at least in part by the excessive generation of reactive oxygen species (ROS). Overproduction of superoxide by the NADPH oxidase isoform Nox4 plays an important role in podocyte injury. The plant extract silymarin is attributed antioxidant and antiproteinuric effects in humans and in animal models of diabetic nephropathy. We investigated the effect of silybin, the active constituent of silymarin, in cultures of mouse podocytes and in the OVE26 mouse, a model of type 1 diabetes mellitus and diabetic nephropathy. Exposure of podocytes to high glucose (HG) increased 60% the intracellular superoxide production, 90% the NADPH oxidase activity, 100% the Nox4 expression, and 150% the number of apoptotic cells, effects that were completely blocked by 10 μM silybin. These in vitro observations were confirmed by similar in vivo findings. The kidney cortex of vehicle-treated control OVE26 mice displayed greater Nox4 expression and twice as much superoxide production than cortex of silybin-treated mice. The glomeruli of control OVE26 mice displayed 35% podocyte drop out that was not present in the silybin-treated mice. Finally, the OVE26 mice experienced 54% more pronounced albuminuria than the silybin-treated animals. In conclusion, this study demonstrates a protective effect of silybin against HG-induced podocyte injury and extends this finding to an animal model of diabetic nephropathy.
Collapse
Affiliation(s)
- Khaled Khazim
- Univ. of Texas Health Science Center, Dept. of Medicine, Division of Nephrology MC 7882, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
41
|
The Expression of Intermediate Filament Protein Nestin and Its Association With Cyclin-dependent Kinase 5 in the Glomeruli of Rats With Diabetic Nephropathy. Am J Med Sci 2013; 345:470-7. [DOI: 10.1097/maj.0b013e3182648459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Kim DI, Park SH. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest. Biochem Biophys Res Commun 2013; 435:702-7. [PMID: 23692924 DOI: 10.1016/j.bbrc.2013.05.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Dong Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500 757, Republic of Korea
| | | |
Collapse
|
43
|
Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol 2013; 304:F1375-89. [PMID: 23486009 DOI: 10.1152/ajprenal.00020.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prednisone is a mainstay of treatment for patients with focal segmental glomerulosclerosis (FSGS), a disease characterized by reduced podocyte number and glomerulosclerosis. Although the systemic immune-modulatory effects of prednisone are well-known, direct tissue effects on glomerular cells are poorly understood. Experimental FSGS was induced in mice with a cytotoxic anti-podocyte antibody, resulting in an abrupt decrease in podocyte number by day 3, proteinuria, and the development of glomerulosclerosis. Administering daily prednisone to mice with FSGS, beginning at day 3, significantly increased podocyte number at weeks 2 and 4. Podocyte number did not increase in control mice with FSGS given DMSO. The increase in podocyte number in prednisone-treated mice correlated significantly with reduced glomerulosclerosis. Prednisone reduced podocyte apoptosis measured by synaptopodin⁺/caspase-3⁺ double staining. Additionally, the number of podocyte progenitors, defined as cells expressing both a parietal epithelial cell protein and a podocyte protein, was significantly increased in prednisone-treated mice with FSGS at weeks 2 and 4. This was associated with increased phospho-ERK staining in both parietal epithelial cells (PAX2⁺/p-ERK⁺) and in podocyte progenitors (WT-1⁺/p-ERK⁺ lining Bowman's capsule). These data show that in this model of experimental FSGS, prednisone augments glomerular repair by increasing podocyte number through direct effects on both glomerular epithelial cells. Prednisone limits podocyte loss by reducing apoptosis, and it increases regeneration by augmenting the number of podocyte progenitors. The data support a direct glomerular cell action for prednisone in improving outcomes in FSGS.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The increasing burden of chronic kidney disease worldwide and recent advancements in the understanding of pathologic events leading to kidney injury have opened up new potential avenues for therapies to further diminish progression of kidney disease by targeting the glomerular filtration barrier and reducing proteinuria. The glomerular filtration barrier is affected by many different metabolic and immune-mediated injuries. Glomerular endothelial cells, the glomerular basement membrane, and podocytes—the three components of the filtration barrier—work together to prevent the loss of protein and at the same time allow passage of water and smaller molecules. Damage to any of the components of the filtration barrier can initiate proteinuria and renal fibrosis. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine strongly associated with the fibrogenic response. It has a known role in tubulointerstitial fibrosis. In this review we will highlight what is known about TGF-β and how it interacts with the components of glomerular filtration barrier and causes loss of function and proteinuria.
Collapse
Affiliation(s)
- Ayesha Ghayur
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
45
|
Gumustekin M, Micili SC, Arici MA, Karaman M, Guneli ME, Tekmen I. The Effect of Insulin Treatment on Rac1 Expression in Diabetic Kidney. Ren Fail 2013; 35:396-402. [DOI: 10.3109/0886022x.2013.764256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant 2013; 19:538-46. [PMID: 23295166 DOI: 10.1016/j.bbmt.2013.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 01/02/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSC) attenuate albuminuria and preserve normal renal histology in diabetic mice. However, the effects of MSC on glomerular podocyte injury remain uncertain. The aim of this study was to evaluate the effects of MSC on podocyte injury in streptozotocin (STZ)-induced diabetic rats. Thirty days after diabetes induction by STZ injection (65 mg/kg, intraperitoneally) in Sprague-Dawley rats, the diabetic rats received medium or 2 × 10(6) enhanced green fluorescent protein-labeled MSC via the renal artery. In vivo tracking of MSC was followed by immunofluorescence analysis. Diabetes-related physical and biochemical parameters were measured on day 60 after the MSC infusion. The expression of podocyte markers (nephrin and podocin), podocyte survival factors (VEGF and BMP-7), and the ultrastructural pathology of podocytes were also assessed. MSC were only detected in the glomeruli from the left kidney receiving MSC infusion. Compared with medium-treated diabetic rats, rats treated with MSC showed a suppressed increase in kidney weight, kidney to body weight index, creatinine clearance rate, and urinary albumin to creatinine ratio; however, the treatment had no effect on blood glucose or body weight levels. Furthermore, the MSC treatment reduced the loss of podocytes, effacement of foot processes, widening of foot processes, thickening of glomerular basal membrane (GBM), and loss of glomerular nephrin and podocin. Most important, MSC-injected kidneys expressed higher levels of BMP-7 but not of VEGF. Our results clearly demonstrated that intra-arterial administration of MSC prevented the development of albuminuria as well as any damage to or loss of podocytes, though there was no improvement in blood sugar levels. The protective effects of MSC may be mediated in part by increasing BMP-7 secretion.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
47
|
Frazier KS, Seely JC, Hard GC, Betton G, Burnett R, Nakatsuji S, Nishikawa A, Durchfeld-Meyer B, Bube A. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 2012; 40:14S-86S. [PMID: 22637735 DOI: 10.1177/0192623312438736] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in the urinary tract of rats and mice. The standardized nomenclature of urinary tract lesions presented in this document is also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous developmental and aging lesions as well as those induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for urinary tract lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Kendall S Frazier
- GlaxoSmithKline-Safety Assessment, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Efrati S, Berman S, Hamad RA, Siman-Tov Y, Chanimov M, Weissgarten J. Hyperglycaemia emerging during general anaesthesia induces rat acute kidney injury via impaired microcirculation, augmented apoptosis and inhibited cell proliferation. Nephrology (Carlton) 2012; 17:111-22. [PMID: 22066573 DOI: 10.1111/j.1440-1797.2011.01538.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Major surgery under general anaesthesia frequently triggers acute kidney injury by yet unknown mechanisms. We investigated the role of anaesthesia-triggered systemic hyperglycaemia in impairment of renal functioning, renal tissue injury, intra-renal Angiotensin-II synthesis and endogenous insulin production in anaesthetized rats. METHODS Eighty-eight Sprague-Dawley rats underwent general anaesthesia for 1 h by different anaesthetic compounds. Some of the animals were either injected with high glucose, or received insulin prior to anaesthesia. Blood pressure, renal functioning estimated by cystatin-C and urea, renal perfusion evaluated by laser Doppler technique, blood glucose and insulin were surveyed. Subsequently, rat kidneys were excised, to be used for immunohistochemical examinations or preparation of renal extracts for intra-renal Angiotensin-II measurements. RESULTS Elevated blood sugar was observed 5 min following induction of anaesthesia, concurrently with deterioration of renal functioning, drop of systemic blood pressure and decreased renal blood flow. Blood insulin concentrations positively correlated with glucose levels. Intra-renal Angiotensin-II was significantly augmented. Immunohistochemical examinations demonstrated enhanced staining for pro-apoptotic proteins and negligible cell proliferation in tubular tissues. Renal damage resultant from anaesthesia-induced hyperglycaemia could be attenuated by insulin injections. Rats challenged with glucose prior to anaesthesia demonstrated cumulative hyperglycaemia, further increase in insulin secretion, drop of renal blood flow and increased apoptosis. The effects were specific, since they could not be mimicked by replacing glucose with mannose. CONCLUSION Anaesthesia-induced hyperglycaemia affects intra-renal auto-regulation via decreased renal perfusion, thus triggering renal function deterioration and tubular injury. Increased intra-renal Angiotensin-II aggravates the damage. Tight hypoglycaemic control might prevent or, at least, attenuate anaesthesia-induced renal injury.
Collapse
Affiliation(s)
- Shai Efrati
- Nephrology Division, Research & Development Unit, Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | | | | | | | |
Collapse
|
49
|
Zhou L, An XF, Teng SC, Liu JS, Shang WB, Zhang AH, Yuan YG, Yu JY. Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. J Med Food 2012; 15:461-8. [PMID: 22439874 PMCID: PMC3338104 DOI: 10.1089/jmf.2011.1921] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/13/2012] [Indexed: 11/12/2022] Open
Abstract
Diabetic nephropathy (DN) is an important diabetic complication, and podocyte apoptosis plays a critical role in the development of DN. In the present study, we examined the preventive effect of the total flavone glycosides of Flos Abelmoschus manihot (TFA) on urinary microalbumin and glomerular podocyte apoptosis in experimental DN rats. The preliminary oral administration of TFA (200 mg/kg/day) for 24 weeks significantly decreased the urinary microalbumin to creatinine ratio and 24-h urinary total protein in streptozotocin-induced DN rats. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay indicated glomerular cell apoptosis in DN rats was significantly improved by pretreatment with TFA. Furthermore, fluorescence-activated cell sorting and Hoechst 33342 staining suggested preincubation with hyperoside (50 and 200 μg/mL), the major active constituent of TFA, could significantly mitigate cultured podocyte apoptosis induced by the advanced glycation end-products (AGEs). Western blot analysis showed that increased caspase-3 and caspase-8 expressions induced by AGEs were also inhibited by pretreatment with hyperoside at both doses. Our results demonstrate that TFA pretreatment can decrease urinary albumin excretion in early-stage DN, which might be accomplished by preventing renal damage and podocyte apoptosis.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiao-Fei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shi-Chao Teng
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jing-Shun Liu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wen-Bin Shang
- Department of Internal Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Hua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Yang-Gang Yuan
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
50
|
Peixoto EBMI, Papadimitriou A, Lopes de Faria JM, Lopes de Faria JB. Tempol reduces podocyte apoptosis via PARP signaling pathway in experimental diabetes mellitus. Nephron Clin Pract 2012; 120:e81-90. [PMID: 22555049 DOI: 10.1159/000337364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS In diabetic hypertensive rats, tempol reduces albuminuria by restoring the redox imbalance. Increased formation of reactive oxygen species leading to activation of poly(ADP-ribose) polymerase (PARP)-1 and podocyte loss by apoptosis contribute to albuminuria in diabetes mellitus (DM). In the present study, we investigated the hypothesis that in DM tempol reduces albuminuria by inhibition of PARP-induced podocyte apoptosis. METHODS DM was induced in 4-week-old spontaneously hypertensive rats by streptozotocin. Mouse and human podocyte cell lines were cultured in normal or high-glucose conditions, with or without tempol and/or a PARP-1 inhibitor, PJ34. RESULTS In diabetic rats, tempol treatment did not affect plasma glucose levels or systolic blood pressure. Albuminuria was higher in diabetic rats, and it was reduced by tempol. DM leads to an elevation of glomerular apoptotic cells and to podocyte loss; both were prevented by tempol treatment. DM increases the expression of poly(ADP-ribose)-modified proteins in isolated glomeruli, and it was reduced by tempol. In vitro, high glucose increased caspase-3 activity and led to a higher number of apoptotic cells that were prevented by tempol and the PARP-1 inhibitor. CONCLUSION In DM, tempol reduces albuminuria associated with reduction of podocyte apoptosis and decreasing oxidative stress via PARP signaling.
Collapse
Affiliation(s)
- Elisa B M I Peixoto
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Division of Nephrology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|