1
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Zou X, Wang S, Zhang Y, Wang X, Zhang R, Yang W, Li Y. AIRE-overexpressing BMDCs suppress T FH cells through ICOSL to prevent and attenuate autoimmune diabetes in NOD mice. Int Immunopharmacol 2021; 99:107979. [PMID: 34293711 DOI: 10.1016/j.intimp.2021.107979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
The strong genetic association between autoimmune regulator (AIRE) and autoimmune diseases indicates its critical role in immune tolerance. AIRE deficiency is thought to promote the development of follicular helper T (TFH) cells, which are considered to be essential in B cell proliferation. Excessive TFH cell generation is a key step towards the development of autoimmune diseases, including type 1 diabetes. However, the potential mechanism by which AIRE contributes to the generation and function of the TFH cell population has remained elusive. We show that AIRE reduced TFH cell generation by inhibiting the expression of inducible costimulatory ligand (ICOSL), interleukin (IL)-6 and IL-27 in dendritic cells (DCs). To understand the precise impact of AIRE-overexpressing bone marrow-derived DCs (AIRE-BMDCs) on type 1 diabetes progression and the associated molecular mechanisms, we transferred AIRE-BMDCs to recipient NOD mice and found that transplantation of AIRE-BMDCs can prevent or delay the onset of diabetes, attenuate diabetes after the establishment of overt hyperglycaemia, and lead to the inhibition of autoreactive pathological TFH cells and germinal centre (GC) B cells. To further determine the potential mechanism underlying this TFH cell depletion, BMDCs were cotransferred with recombinant mouse ICOSL (ICOSLG protein). We demonstrated that NOD mice were more susceptible to diabetes when they received AIRE-BMDCs and ICOSLG than when they received only mock-vehicle BMDCs (GFP-BMDCs). In addition, we did not observe the reversal of diabetes in any mice subjected to this cotransfer system. A single cycle of ICOSLG treatment temporarily promoted TFH cell proliferation and GC development. Our results reveal a mechanistic role of AIRE-BMDCs in the initiation of TFH cell differentiation, and the AIRE-mediated decrease in ICOSL expression in BMDCs plays a critical role. The effect of decreased ICOSL expression in type 1 diabetes will guide the design and evaluation of parallel studies in patients.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shuang Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yi Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
4
|
Wiede F, Brodnicki TC, Goh PK, Leong YA, Jones GW, Yu D, Baxter AG, Jones SA, Kay TWH, Tiganis T. T-Cell-Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes 2019; 68:1251-1266. [PMID: 30936146 DOI: 10.2337/db18-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/17/2019] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic β-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yew A Leong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, U.K
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Yang M, Du C, Wang Y, Liu J. CD19 +CD24 hiCD38 hi regulatory B cells are associated with insulin resistance in type I Hashimoto's thyroiditis in Chinese females. Exp Ther Med 2017; 14:3887-3893. [PMID: 29042997 DOI: 10.3892/etm.2017.4925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is typically associated with insulin resistance. The aim of the present study was to investigate the role of regulatory B cells (Bregs) in insulin resistance in patients with HT. A total of 52 female patients with type I HT and 35 matched healthy volunteers were enrolled. Demographic and laboratorial data were collected. A 75 g oral glucose tolerance test was performed on each subject. Flow cytometry was performed to evaluate the levels of CD19+CD24hiCD38hi Bregs in peripheral blood. Patients with HT exhibited significantly higher postprandial insulin levels (P<0.01), but normal glucose levels. The level of CD19+CD24hiCD38hi Bregs in patients with HT decreased significantly (P=0.0002) compared with the controls. Pearson's linear correlation model revealed a significant, negative association between anti-thyroid peroxidase antibodies (TPOAb) and homeostasis model assessment of β cell (r=-0.313, P=0.014). The same correlation model revealed a significant, negative association between TPOAb and the disposition index (DI; r=-0.305, P=0.017), and between anti-thyroglobulin antibodies and DI (r=-0.321, P=0.013). Patients with a decreased ratio of CD19+CD24hiCD38hi Bregs to CD19+ lymphocytes exhibited higher levels of total cholesterol and low-density lipoprotein cholesterol. A decrease in the ratio of CD19+CD24hiCD38hi Bregs to lymphocytes was a significant independent risk factor for hyperinsulinemia (odds ratio=1.372, P=0.035). A decrease in peripheral blood CD19+CD24hiCD38hi Bregs is associated with insulin resistance in HT patients, and was an independent risk factor for postprandial hyperinsulinemia. The present study provided a novel insight into the development of effective therapeutic strategies targeting immune mechanisms associated with HT.
Collapse
Affiliation(s)
- Min Yang
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Changji Du
- Department of Clinical Lab of Immunology, The DaoPei Hospital of Shanghai, Shanghai 200000, P.R. China
| | - Yinping Wang
- Department of Clinical Lab of Immunology, The DaoPei Hospital of Shanghai, Shanghai 200000, P.R. China
| | - Jun Liu
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
6
|
Li X, Ding Y, Zi M, Sun L, Zhang W, Chen S, Xu Y. CD19, from bench to bedside. Immunol Lett 2017; 183:86-95. [DOI: 10.1016/j.imlet.2017.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
|
7
|
Abraham PM, Quan SH, Dukala D, Soliven B. CD19 as a therapeutic target in a spontaneous autoimmune polyneuropathy. Clin Exp Immunol 2014; 175:181-91. [PMID: 24116957 DOI: 10.1111/cei.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2013] [Indexed: 01/21/2023] Open
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knock-out non-obese diabetic (NOD) mice is mediated by myelin protein zero (P0)-reactive T helper type 1 (Th1) cells. In this study, we investigated the role of B cells in SAP, focusing on CD19 as a potential therapeutic target. We found that P0-specific plasmablasts and B cells were increased in spleens of SAP mice compared to wild-type NOD mice. Depletion of B cells and plasmablasts with anti-CD19 monoclonal antibody (mAb) led to attenuation of disease severity when administered at 5 months of age. This was accompanied by decreased serum immunoglobulin (Ig)G and IgM levels, depletion of P0-specific plasmablasts and B cells, down-regulation/internalization of surface CD19 and increased frequency of CD4(+) regulatory T cells in spleens. We conclude that B cells are crucial to the pathogenesis of SAP, and that CD19 is a promising B cell target for the development of disease-modifying agents in autoimmune neuropathies.
Collapse
Affiliation(s)
- P M Abraham
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
8
|
Hinman RM, Smith MJ, Cambier JC. B cells and type 1 diabetes ...in mice and men. Immunol Lett 2014; 160:128-32. [PMID: 24472603 DOI: 10.1016/j.imlet.2014.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
Abstract
Nearly 70% of newly produced B cells express autoreactive antigen receptors and must be silenced to prevent autoimmunity. Failure of silencing mechanisms is apparent in type 1 diabetes (T1D), where islet antigen-specific B cells appear critical for development of disease. Evidence for a B cell role in T1D includes success of B cell targeted anti-CD20 therapy, which delays T1D progression in both NOD mice and new onset patients. Demonstrating the importance of specificity, NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Finally, though not required for illness, high affinity insulin autoantibodies are often the first harbingers of T1D. B cell cytokine production and auto-antigen presentation to self-reactive T cells are likely important in pathogenesis. Here we review B cell function, as described above, in T1D in humans and the non-obese diabetic (NOD) mouse. We will discuss recent broad-based B cell depletion studies and how they may provide the basis for refinement of future treatments for the disorder.
Collapse
Affiliation(s)
- Rochelle M Hinman
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - Mia J Smith
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - John C Cambier
- University of Colorado Denver and National Jewish Health, Denver, CO, United States; Department of Immunology, National Jewish Health, Rm 803A, Goodman Building, 1400 Jackson Street, Denver, CO 80206, United States.
| |
Collapse
|