1
|
Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 2021; 9:1248-1257. [PMID: 35873023 PMCID: PMC9293700 DOI: 10.1016/j.gendis.2021.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The present review focuses on the roles and underlying mechanisms of action of hepatic nuclear factor-1 (HNF-1) in lipid metabolism and the development of lipid metabolism disorders. HNF-1 is a transcriptional regulator that can form homodimers, and the HNF-1α and HNF-1β isomers can form heterodimers. Both homo- and heterodimers recognize and bind to specific cis-acting elements in gene promoters to transactivate transcription and to coordinate the expression of target lipid-related genes, thereby influencing the homeostasis of lipid metabolism. HNF-1 was shown to restrain lipid anabolism, including synthesis, absorption, and storage, by inhibiting the expression of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1/2 (SREBP-1/2). Moreover, HNF-1 enhances the expression of various genes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), glutathione peroxidase 1 (GPx1), and suppressor of cytokine signaling-3 (SOCS-3) and negatively regulates signal transducer and activator of transcription (STAT) to facilitate lipid catabolism in hepatocytes. HNF-1 reduces hepatocellular lipid decomposition, which alleviates the progression of nonalcoholic fatty liver disease (NAFLD). HNF-1 impairs preadipocyte differentiation to reduce the number of adipocytes, stunting the development of obesity. Furthermore, HNF-1 reduces free cholesterol levels in the plasma to inhibit aortic lipid deposition and lipid plaque formation, relieving dyslipidemia and preventing the development of atherosclerotic cardiovascular disease (ASCVD). In summary, HNF-1 transcriptionally regulates lipid-related genes to manipulate intracorporeal balance of lipid metabolism and to suppress the development of lipid metabolism disorders.
Collapse
|
2
|
Genetic analysis of hsCRP in American Indians: The Strong Heart Family Study. PLoS One 2019; 14:e0223574. [PMID: 31622379 PMCID: PMC6797125 DOI: 10.1371/journal.pone.0223574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increased serum levels of C-reactive protein (CRP), an important component of the innate immune response, are associated with increased risk of cardiovascular disease (CVD). Multiple single nucleotide polymorphisms (SNP) have been identified which are associated with CRP levels, and Mendelian randomization studies have shown a positive association between SNPs increasing CRP expression and risk of colon cancer (but thus far not CVD). The effects of individual genetic variants often interact with the genetic background of a population and hence we sought to resolve the genetic determinants of serum CRP in a number of American Indian populations. Methods The Strong Heart Family Study (SHFS) has serum CRP measurements from 2428 tribal members, recruited as large families from three regions of the United States. Microsatellite markers and MetaboChip defined SNP genotypes were incorporated into variance components, decomposition-based linkage and association analyses. Results CRP levels exhibited significant heritability (h2 = 0.33 ± 0.05, p<1.3 X 10−20). A locus on chromosome (chr) 6, near marker D6S281 (approximately at 169.6 Mb, GRCh38/hg38) showed suggestive linkage (LOD = 1.9) to CRP levels. No individual SNPs were found associated with CRP levels after Bonferroni adjustment for multiple testing (threshold <7.77 x 10−7), however, we found nominal associations, many of which replicate previous findings at the CRP, HNF1A and 7 other loci. In addition, we report association of 46 SNPs located at 7 novel loci on chromosomes 2, 5, 6(2 loci), 9, 10 and 17, with an average of 15.3 Kb between SNPs and all with p-values less than 7.2 X 10−4. Conclusion In agreement with evidence from other populations, these data show CRP serum levels are under considerable genetic influence; and include loci, such as near CRP and other genes, that replicate results from other ethnic groups. These findings also suggest possible novel loci on chr 6 and other chromosomes that warrant further investigation.
Collapse
|
3
|
Aarestrup J, Jess T, Kobylecki CJ, Nordestgaard BG, Allin KH. Cardiovascular Risk Profile Among Patients With Inflammatory Bowel Disease: A Population-based Study of More Than 100 000 Individuals. J Crohns Colitis 2019; 13:319-323. [PMID: 30321330 DOI: 10.1093/ecco-jcc/jjy164] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Patients with inflammatory bowel disease have increased risks of cardiovascular diseases, but the role of traditional and non-traditional cardiovascular risk factors remains unclear. We investigated if the cardiovascular risk profile differs between patients with inflammatory bowel disease and individuals in the general population. METHODS We included a population of 108789 participants from the Copenhagen General Population Study of individuals of Danish descent aged 20-100 years. The population included 1203 individuals with prevalent inflammatory bowel disease [347 with Crohn's disease and 856 with ulcerative colitis]. The cardiovascular risk profile was assessed by traditional risk factors [plasma lipids and glucose, body composition measures, and blood pressure] and non-traditional risk factors [inflammatory markers and biomarkers of liver and pancreas function]. RESULTS Even though patients with inflammatory bowel disease more frequently are diagnosed with cardiovascular diseases, traditional cardiovascular risk factors were not increased. Indeed, patients with inflammatory bowel disease had slightly lower plasma levels of total cholesterol and low-density lipoprotein cholesterol. Levels of inflammatory markers, particularly high-sensitivity C-reactive protein, were higher in individuals with versus without a diagnosis of inflammatory bowel disease, when assessed at a random point in time during the disease course. CONCLUSIONS The increased risk of cardiovascular diseases in patients with inflammatory bowel disease may be linked to chronic systemic inflammation rather than to traditional cardiovascular risk factors. Further studies need to examine whether cardiovascular-preventive strategies should focus on optimising management of inflammation in patients with inflammatory bowel disease rather than focusing on traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Julie Aarestrup
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Tine Jess
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Camilla J Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Lipid-associated genetic polymorphisms are associated with FBP and LDL-c levels among myocardial infarction patients in Chinese population. Gene 2018; 676:22-28. [DOI: 10.1016/j.gene.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
|
5
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Variants in MODY genes associated with maternal lipids profiles in second trimester of pregnancy. J Gene Med 2017; 19. [PMID: 28591938 DOI: 10.1002/jgm.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Juntao Liu
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xueyan Wu
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xi Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
6
|
Morita K, Saruwatari J, Tanaka T, Oniki K, Kajiwara A, Miyazaki H, Yoshida A, Jinnouchi H, Nakagawa K. Common variants of HNF1A gene are associated with diabetic retinopathy and poor glycemic control in normal-weight Japanese subjects with type 2 diabetes mellitus. J Diabetes Complications 2017; 31:483-488. [PMID: 27445006 DOI: 10.1016/j.jdiacomp.2016.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
Abstract
AIM This study investigated the associations between the common hepatocyte nuclear factor-1A (HNF1A) variants and the risk of diabetic retinopathy (DR) in relation to the glycemic control and weight status. METHODS A retrospective longitudinal analysis was conducted among 354 Japanese patients with type 2 diabetes mellitus (T2DM) (mean follow-up duration: 5.8±2.5 years). The multivariable-adjusted hazard ratio (HR) for the cumulative incidence of DR was calculated using a Cox proportional hazard model. During the observation period, the longitudinal associations of the HNF1A diplotypes with the risk of DR and the clinical parameters were also analyzed using the generalized estimating equations approach. RESULTS The combination of risk variants, i.e., rs1169288-C, rs1183910-A and rs2464196-A, was defined as the H1 haplotype. The incidence of DR was higher in the H1/H1 diplotype cases than in the others (HR 2.75 vs. non-H1/non-H1; p=0.02). Only in normal-weight subjects, the risks of DR and poor glycemic control were higher in the H1/H1 diplotype cases than in the others [odds ratio 4.08 vs. non-H1/non-H1, p=0.02; odds ratio 3.03, p=0.01; respectively]. CONCLUSIONS This study demonstrated that the common HNF1A diplotype of three risk variants may be an independent risk factor for the development of DR resulting from poor glycemic control in normal-weight patients with T2DM. These results need to be replicated in larger and more varied study populations.
Collapse
Affiliation(s)
- Kazunori Morita
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Tanaka
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Kajiwara
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Miyazaki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yoshida
- Jinnouchi Clinic, Diabetes Care Center, Kumamoto, Japan
| | | | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
A candidate-gene association study of topiramate-induced weight loss in obese patients with and without type 2 diabetes mellitus. Pharmacogenet Genomics 2016; 26:53-65. [DOI: 10.1097/fpc.0000000000000185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ahluwalia TS, Allin KH, Sandholt CH, Sparsø TH, Jørgensen ME, Rowe M, Christensen C, Brandslund I, Lauritzen T, Linneberg A, Husemoen LL, Jørgensen T, Hansen T, Grarup N, Pedersen O. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes. J Clin Endocrinol Metab 2015; 100:E664-71. [PMID: 25599387 DOI: 10.1210/jc.2014-3677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Type 2 diabetes (T2D) prevalence is spiraling globally, and knowledge of its pathophysiological signatures is crucial for a better understanding and treatment of the disease. OBJECTIVE We aimed to discover underlying coding genetic variants influencing fasting serum levels of nine biomarkers associated with T2D: adiponectin, C-reactive protein, ferritin, heat shock 70-kDa protein 1B, IGF binding protein 1 and IGF binding protein 2, IL-18, IL-2 receptor-α, and leptin. DESIGN AND PARTICIPANTS A population-based sample of 6215 adult Danes was genotyped for 16 340 coding single-nucleotide polymorphisms and were tested for association with each biomarker. Identified loci were tested for association with T2D through a large-scale meta-analysis involving up to 17 024 T2D cases and up to 64 186 controls. RESULTS We discovered 11 associations between single-nucleotide polymorphisms and five distinct biomarkers at a study-wide P < 3.4 × 10(-7). Nine associations were novel: IL18: BIRC6, RAD17, MARVELD2; ferritin: F5; IGF binding protein 1: SERPING1, KLKB, GCKR, CELSR2, and heat shock 70-kDa protein 1B: CFH. Three of the identified loci (CELSR2, HNF1A, and GCKR) were significantly associated with T2D, of which the association with the CELSR2 locus has not been shown previously. CONCLUSION The identified loci influence processes related to insulin signaling, cell communication, immune function, apoptosis, DNA repair, and oxidative stress, all of which could provide a rationale for novel diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tarunveer Singh Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research (T.S.A., K.H.A., C.H.S., T.H.A., T.H., N.G., O.P.), Section of Metabolic Genetics, Faculty of Health and Medical Sciences, Department of Clinical Medicine (A.L.), Faculty of Health and Medical Sciences, and Institute of Public Health (T.J.), University of Copenhagen, 2100 Copenhagen, Denmark; Copenhagen Prospective Studies on Asthma in Childhood (T.S.A.), Faculty of Health and Medical Sciences, University of Copenhagen, 2820 Copenhagen, Denmark; The Danish Paediatric Asthma Center (T.S.A.), Gentofte Hospital, The Capital Region, 2820 Copenhagen, Denmark; Steno Diabetes Center (E.J.), 2820 Gentofte, Denmark; Tethys Bioscience Inc (M.R.), Emeryville, California 94608; Departments of Internal Medicine and Endocrinology (C.C.) and Clinical Biochemistry (I.B.), Vejle Hospital, 7100 Vejle, Denmark; Institute of Regional Health Research (I.B.), and Faculty of Health Sciences (T.H.), University of Southern Denmark, 5230 Odense, Denmark; Department of General Practice (T.L.), Aarhus University, 8000 C Aarhus, Denmark; Research Centre for Prevention and Health (A.L., L.L.H., T.J.), The Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Experimental Research (A.L.), Glostrup University Hospital, 2600 Glostrup, Denmark; and Faculty of Medicine (T.J.), University of Aalborg, 9220 Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|