1
|
Ruiz-Pino A, Goncalves-Ramírez A, Jiménez-Palomares M, Merino B, Castellano-Muñoz M, Vettorazzi JF, Rafacho A, Marroquí L, Nadal Á, Alonso-Magdalena P, Perdomo G, Cózar-Castellano I, Quesada I. Hyperglucagonemia and glucagon hypersecretion in early type 2 diabetes result from multifaceted dysregulation of pancreatic mouse α-cells. Pflugers Arch 2025; 477:207-221. [PMID: 39601887 DOI: 10.1007/s00424-024-03045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Hyperglucagonemia has been implicated in the pathogenesis of type 2 diabetes (T2D). In contrast to β-cells, studies on the function of the pancreatic α-cell in T2D are scarce. Consequently, the processes underlying hyperglucagonemia and α-cell dysfunction are largely unknown, limiting the appropriate design of specific pharmacological and therapeutic strategies. In the current study, we aimed to analyze the alterations of the pancreatic α-cell and its glucagon responses in diabetic db/db mice at early stages of the disease. In this context of glucose intolerance, hyperinsulinemia, and β-cell dysfunction, hyperglucagonemia was only present at fed conditions and was associated with insulin resistance. Yet, we found that the glucagon-to-insulin ratio in db/db mice did not change with fed or fasted states, further supporting that the metabolic regulation of glucagon release was impaired. Pancreatic β-cell dysfunction in db/db mice was manifested by increased basal secretion from isolated islets along with reduced insulin content. In contrast, α-cells from diabetic animals presented upregulated secretion and islet content of glucagon compared with controls. Electrophysiological analysis of dispersed α-cells revealed that altered secretion was not the result of impaired exocytosis. Instead, we found defective regulation of Ca2+ signaling by glucose. Besides these functional alterations, we also observed augmented α-cell mass in diabetic mice, which was accompanied by disrupted islet cytoarchitecture as well as increased α-cell size and number, without pieces of evidence of upregulated proliferation. Overall, these findings indicate that hyperglucagonemia in early T2D results from multifaceted α-cell deregulation in mice.
Collapse
Affiliation(s)
- Antonia Ruiz-Pino
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche, San Juan de Alicante, Alicante, Spain
| | - Arianna Goncalves-Ramírez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Margarita Jiménez-Palomares
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11003, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11009, Cádiz, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Manuel Castellano-Muñoz
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
| | - Jean F Vettorazzi
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Foz Do Iguaçú, Paraná, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Duckett S, MacDonald PE. Lessons from a model: early glucagon dysfunction in type 2 diabetes. Pflugers Arch 2025; 477:201-203. [PMID: 39776190 DOI: 10.1007/s00424-024-03062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Affiliation(s)
- Shawn Duckett
- Department of Pharmacology, University of Alberta, LKS Centre, Rm 6-126, Edmonton, AB, T6G2R3, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, LKS Centre, Rm 6-126, Edmonton, AB, T6G2R3, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Jevon D, Cottle L, Hallahan N, Harwood R, Samra JS, Gill AJ, Loudovaris T, Thomas HE, Thorn P. Capillary contact points determine beta cell polarity, control secretion and are disrupted in the db/db mouse model of diabetes. Diabetologia 2024; 67:1683-1697. [PMID: 38814445 PMCID: PMC11343897 DOI: 10.1007/s00125-024-06180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 05/31/2024]
Abstract
AIMS/HYPOTHESIS Almost all beta cells contact one capillary and insulin granule fusion is targeted to this region. However, there are reports of beta cells contacting more than one capillary. We therefore set out to determine the proportion of beta cells with multiple contacts and the impact of this on cell structure and function. METHODS We used pancreatic slices in mice and humans to better maintain cell and islet structure than in isolated islets. Cell structure was assayed using immunofluorescence and 3D confocal microscopy. Live-cell two-photon microscopy was used to map granule fusion events in response to glucose stimulation. RESULTS We found that 36% and 22% of beta cells in islets from mice and humans, respectively, have separate contact with two capillaries. These contacts establish a distinct form of cell polarity with multiple basal regions. Both capillary contact points are enriched in presynaptic scaffold proteins, and both are a target for insulin granule fusion. Cells with two capillary contact points have a greater capillary contact area and secrete more, with analysis showing that, independent of the number of contact points, increased contact area is correlated with increased granule fusion. Using db/db mice as a model for type 2 diabetes, we observed changes in islet capillary organisation that significantly reduced total islet capillary surface area, and reduced area of capillary contact in single beta cells. CONCLUSIONS/INTERPRETATION Beta cells that contact two capillaries are a significant subpopulation of beta cells within the islet. They have a distinct form of cell polarity and both contact points are specialised for secretion. The larger capillary contact area of cells with two contact points is correlated with increased secretion. In the db/db mouse, changes in capillary structure impact beta cell capillary contact, implying that this is a new factor contributing to disease progression.
Collapse
Affiliation(s)
- Dillon Jevon
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Nicole Hallahan
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Richard Harwood
- Charles Perkins Centre, Sydney Microscopy and Microanalysis, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder S Samra
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | | | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Suba K, Patel Y, Martin-Alonso A, Hansen B, Xu X, Roberts A, Norton M, Chung P, Shrewsbury J, Kwok R, Kalogianni V, Chen S, Liu X, Kalyviotis K, Rutter GA, Jones B, Minnion J, Owen BM, Pantazis P, Distaso W, Drucker DJ, Tan TM, Bloom SR, Murphy KG, Salem V. Intra-islet glucagon signalling regulates beta-cell connectivity, first-phase insulin secretion and glucose homoeostasis. Mol Metab 2024; 85:101947. [PMID: 38677509 PMCID: PMC11177084 DOI: 10.1016/j.molmet.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with β-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion. METHODS Metabolic profiling was conducted on Gcgrβ-cell-/- and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for β-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in β-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment. RESULTS Gcgrβ-cell-/- mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrβ-cell-/- 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrβ-cell-/- islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8). CONCLUSION These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.
Collapse
Affiliation(s)
- K Suba
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Y Patel
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - A Martin-Alonso
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B Hansen
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - X Xu
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - A Roberts
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - M Norton
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Chung
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Shrewsbury
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - R Kwok
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Kalogianni
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S Chen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - X Liu
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K Kalyviotis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - G A Rutter
- CHUM Research Center, University of Montreal, QC, Canada; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| | - B Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Minnion
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B M Owen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Pantazis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - W Distaso
- Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom
| | - D J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - T M Tan
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K G Murphy
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Salem
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
5
|
Lei X, Ishida E, Yoshino S, Matsumoto S, Horiguchi K, Yamada E. Calorie Restriction Using High-Fat/Low-Carbohydrate Diet Suppresses Liver Fat Accumulation and Pancreatic Beta-Cell Dedifferentiation in Obese Diabetic Mice. Nutrients 2024; 16:995. [PMID: 38613031 PMCID: PMC11013071 DOI: 10.3390/nu16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In diabetes, pancreatic β-cells gradually lose their ability to secrete insulin with disease progression. β-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by β-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of β-cell dysfunction. Previously, we reported β-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on β-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, β-cell dedifferentiation did not improve in the db-HC group, and β-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and β-cell dedifferentiation.
Collapse
Affiliation(s)
| | - Emi Ishida
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | | | | | | | | |
Collapse
|
6
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
Volpe M, Ferrera A, Piccinocchi R, Morisco C. The Emerging Role of Prediabetes and Its Management: Focus on L-Arginine and a Survey in Clinical Practice. High Blood Press Cardiovasc Prev 2023; 30:489-496. [PMID: 38060094 PMCID: PMC10721705 DOI: 10.1007/s40292-023-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide impressive growth of metabolic disorders observed in the last decades, especially type 2 diabetes mellitus and obesity, has generated great interest in the potential benefits of early identification and management of patients at risk. In this view, prediabetes represents a high-risk condition for the development of type 2 diabetes mellitus and cardiovascular diseases, and an ideal target to intercept patients before they develop type 2 diabetes gaining a prominent role even in international guidelines. For prediabetic individuals, lifestyle modification is the cornerstone of diabetes prevention, with evidence of about 50% relative risk reduction. Accumulating data also show potential benefits from pharmacotherapy. In this context, the only available data pertain to metformin as a pharmaceutical drug and vitamin D and L-arginine as nutraceuticals. L-arginine appears to be a very interesting tool in the clinical management of patients with pre-diabetes. In this review we summarize the current knowledge on the role of L-arginine in prediabetes as a potentially useful preventive strategy against the progression to type 2 diabetes, with a particular focus on the underlying molecular mechanisms and the past and ongoing trials. In this article we also report the interesting data about the perception of the prediabetic condition and its therapeutic management in the clinical practice in Italy. An early identification and a prompt management of people with prediabetes appears to be of paramount importance to prevent the progression to diabetes and avoid its cardiovascular consequences.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy.
- IRCCS San Raffaele, Rome, Italy.
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy
| | | | | |
Collapse
|
8
|
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023; 14:130-146. [PMID: 37035220 PMCID: PMC10075035 DOI: 10.4239/wjd.v14.i3.130] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Insulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic β-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of β-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during β-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve β-cell function.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Albert Kotze Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town 7500, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
9
|
Ou K, Zhang S, Song J, Fang L, Xia S, Huang J, Wang Q, Wang C. Prenatal EGCG consumption causes obesity and perturbs glucose homeostasis in adult mice. J Nutr Biochem 2023; 111:109179. [PMID: 36223832 DOI: 10.1016/j.jnutbio.2022.109179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Epigallocatechin gallate (EGCG) has a wide consumption for its health advantages. The current study investigates the effects of prenatal EGCG administration on glucose metabolism and obesity in adulthood. Pregnant C57BL/6J mice were supplemented with EGCG in drinking water (3 µg/mL) for 16 d. Abdominal obesity was observed in both male and female adult mice, which was associated with the upregulation of adipose-specific genes, including C/ebpα and Srebf1 (Srebf1 only in males), and the downregulation of genes related to lipolysis, such as Acox1, Atgl and Pdk4 (only in males) in visceral adipose tissue. Elevated fasting glucose levels and hyperinsulinemia were observed in adult males, while females exhibit lower glucose level in glucose tolerance test, which might be due to reduced glucagon levels. Though hepatic expression of the insulin receptor signaling pathway was upregulated in males and was not altered in females, prenatal treatment with EGCG downregulated the expression of this signaling pathway in the skeletal muscle of adult mice, which was further demonstrated in primary human skeletal muscle cells treated with EGCG. The methylation levels in promotor of genes related to the insulin receptor signaling were matched with their transcription in mice, while the expression of acetylated histones was downregulated in human skeletal muscle cells. These results suggest that EGCG consumption during pregnancy should be a risk factor for the disruption of glucose homeostasis in adulthood.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
10
|
Intermittent protein restriction protects islet β cells and improves glucose homeostasis in diabetic mice. Sci Bull (Beijing) 2022; 67:733-747. [PMID: 36546138 DOI: 10.1016/j.scib.2021.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023]
Abstract
Diabetes is caused by the interplay between genetics and environmental factors, tightly linked to lifestyle and dietary patterns. In this study, we explored the effectiveness of intermittent protein restriction (IPR) in diabetes control. IPR drastically reduced hyperglycemia in both streptozotocin-treated and leptin receptor-deficient db/db mouse models. IPR improved the number, proliferation, and function of β cells in pancreatic islets. IPR reduced glucose production in the liver and elevated insulin signaling in the skeletal muscle. IPR elevated serum level of FGF21, and deletion of the Fgf21 gene in the liver abrogated the hypoglycemic effect of IPR without affecting β cells. IPR caused less lipid accumulation and damage in the liver than that caused by continuous protein restriction in streptozotocin-treated mice. Single-cell RNA sequencing using mouse islets revealed that IPR reversed diabetes-associated β cell reduction and immune cell accumulation. As IPR is not based on calorie restriction and is highly effective in glycemic control and β cell protection, it has promising translational potential in the future.
Collapse
|
11
|
Yau B, Naghiloo S, Diaz-Vegas A, Carr AV, Van Gerwen J, Needham EJ, Jevon D, Chen SY, Hoehn KL, Brandon AE, Macia L, Cooney GJ, Shortreed MR, Smith LM, Keller MP, Thorn P, Larance M, James DE, Humphrey SJ, Kebede MA. Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet. iScience 2021; 24:103099. [PMID: 34622154 PMCID: PMC8479695 DOI: 10.1016/j.isci.2021.103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.
Collapse
Affiliation(s)
- Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Sheyda Naghiloo
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Austin V. Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julian Van Gerwen
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Elise J. Needham
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Dillon Jevon
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Sing-Young Chen
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Kyle L. Hoehn
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Amanda E. Brandon
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Laurance Macia
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Gregory J. Cooney
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | | | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Thorn
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Mark Larance
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - David E. James
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Sean J. Humphrey
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Melkam A. Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
12
|
Lee LC, Hou YC, Hsieh YY, Chen YH, Shen YC, Lee IJ, Monica Shih MC, Hou WC, Liu HK. Dietary supplementation of rutin and rutin-rich buckwheat elevates endogenous glucagon-like peptide 1 levels to facilitate glycemic control in type 2 diabetic mice. J Funct Foods 2021; 85:104653. [DOI: 10.1016/j.jff.2021.104653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Yau B, Hays L, Liang C, Laybutt DR, Thomas HE, Gunton JE, Williams L, Hawthorne WJ, Thorn P, Rhodes CJ, Kebede MA. A fluorescent timer reporter enables sorting of insulin secretory granules by age. J Biol Chem 2020; 295:8901-8911. [PMID: 32341128 PMCID: PMC7335792 DOI: 10.1074/jbc.ra120.012432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
Within the pancreatic β-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in β-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from β-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the β-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in β-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 β-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the β-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.
Collapse
Affiliation(s)
- Belinda Yau
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lori Hays
- STEM-Department of Biology, Edmonds Community College, Lynnwood, Washington, USA
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jenny E Gunton
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Lindy Williams
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; National Pancreas and Islet Transplant Unit (NPITU), Westmead Hospital, Sydney, New South Wales, Australia
| | - Wayne J Hawthorne
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; National Pancreas and Islet Transplant Unit (NPITU), Westmead Hospital, Sydney, New South Wales, Australia
| | - Peter Thorn
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, Maryland, USA; Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Melkam A Kebede
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Flores YN, Toth S, Crespi CM, Ramírez-Palacios P, McCarthy WJ, Briseño-Pérez A, Granados-García V, Salmerón J. Risk of developing pre-diabetes or diabetes over time in a cohort of Mexican health workers. PLoS One 2020; 15:e0229403. [PMID: 32210432 PMCID: PMC7094846 DOI: 10.1371/journal.pone.0229403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022] Open
Abstract
AIM To determine the association between known risk factors (e.g., obesity, metabolic syndrome and its components) and the development of pre-diabetes or diabetes over time in a cohort of Mexican health workers. METHODS Participants in the Mexican Health Worker Cohort Study with complete information at two waves of data collection, 2004-2006 (W1) and 2011-2013 (W2), were included in the analysis (n = 1,174). Multivariable binary and multinomial logistic regression were used to examine the cross-sectional associations between specific risk factors and diabetes status (diabetes, pre-diabetes, or neither) at W1 and the longitudinal associations between changes in risk factors and progression of diabetes status from W1 to W2, respectively. RESULTS Mean time between waves was 7.0 years (SD 1.1). Prevalence of pre-diabetes and diabetes was 16% and 10% at W1 and increased to 30% and 16% at W2, respectively. The cross-sectional prevalence of pre-diabetes and diabetes was significantly higher among men, participants over the age of 45 years, and individuals who were overweight or obese or had metabolic syndrome (MS), three or more components of the MS, elevated alanine aminotransferase (ALT) levels, or elevated uric acid. In longitudinal analyses, remaining obese or gaining weight between waves was associated with an increased risk of developing pre-diabetes. A greater risk of developing pre-diabetes or diabetes was also observed among individuals who either maintained or acquired MS, elevated ALT, or elevated uric acid (only for diabetes) from W1 to W2. CONCLUSIONS Weight gain and acquiring or maintaining MS, elevated ALT levels, or elevated uric acid were associated with a significant risk of developing pre-diabetes or diabetes. Our findings, especially in the context of the obesity epidemic in Mexico, point towards an urgent need for initiatives to help reduce excess weight in order to avert future cases of pre-diabetes and diabetes.
Collapse
Affiliation(s)
- Yvonne N. Flores
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Delegación Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, México
- UCLA Department of Health Policy and Management and Kaiser Permanente Center for Health Equity, Fielding School of Public Health, Los Angeles, California, United States of America
- UCLA Cancer Prevention and Control Research Center, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Samantha Toth
- UCLA Department of Biostatistics, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Catherine M. Crespi
- UCLA Cancer Prevention and Control Research Center, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, California, United States of America
- UCLA Department of Biostatistics, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Paula Ramírez-Palacios
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Delegación Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, México
| | - William J. McCarthy
- UCLA Department of Health Policy and Management and Kaiser Permanente Center for Health Equity, Fielding School of Public Health, Los Angeles, California, United States of America
- UCLA Cancer Prevention and Control Research Center, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Arely Briseño-Pérez
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Delegación Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, México
| | - Víctor Granados-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud- Área Envejecimiento, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
15
|
Ursino GM, Fu Y, Cottle DL, Mukhamedova N, Jones LK, Low H, Tham MS, Gan WJ, Mellett NA, Das PP, Weir JM, Ditiatkovski M, Fynch S, Thorn P, Thomas HE, Meikle PJ, Parkington HC, Smyth IM, Sviridov D. ABCA12 regulates insulin secretion from β-cells. EMBO Rep 2020; 21:e48692. [PMID: 32072744 DOI: 10.15252/embr.201948692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of lipid homeostasis is intimately associated with defects in insulin secretion, a key feature of type 2 diabetes. Here, we explore the role of the putative lipid transporter ABCA12 in regulating insulin secretion from β-cells. Mice with β-cell-specific deletion of Abca12 display impaired glucose-stimulated insulin secretion and eventual islet inflammation and β-cell death. ABCA12's action in the pancreas is independent of changes in the abundance of two other cholesterol transporters, ABCA1 and ABCG1, or of changes in cellular cholesterol or ceramide content. Instead, loss of ABCA12 results in defects in the genesis and fusion of insulin secretory granules and increases in the abundance of lipid rafts at the cell membrane. These changes are associated with dysregulation of the small GTPase CDC42 and with decreased actin polymerisation. Our findings establish a new, pleiotropic role for ABCA12 in regulating pancreatic lipid homeostasis and insulin secretion.
Collapse
Affiliation(s)
- Gloria M Ursino
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Ming Shen Tham
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Wan Jun Gan
- Charles Perkins Centre, Camperdown, NSW, Australia
| | | | - Partha P Das
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | | | | | - Stacey Fynch
- St Vincent's Institute, Fitzroy, Vic., Australia
| | - Peter Thorn
- Charles Perkins Centre, Camperdown, NSW, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Helena C Parkington
- Department of Physiology, Neuroscience Discovery Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| |
Collapse
|
16
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Chittezhath M, Gunaseelan D, Zheng X, Hasan R, Tay VSY, Lim ST, Wang X, Berggren PO, Bornstein S, Boehm B, Ruedl C, Ali Y. Islet macrophages are associated with islet vascular remodeling and compensatory hyperinsulinemia during diabetes. Am J Physiol Endocrinol Metab 2019; 317:E1108-E1120. [PMID: 31573842 DOI: 10.1152/ajpendo.00248.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
β-Cells respond to peripheral insulin resistance by first increasing circulating insulin during diabetes. Islet remodeling supports this compensation, but its drivers remain poorly understood. Infiltrating macrophages have been implicated in late-stage type 2 diabetes, but relatively little is known on islet resident macrophages, especially during compensatory hyperinsulinemia. We hypothesized that islet resident macrophages would contribute to islet vascular remodeling and hyperinsulinemia during diabetes, the failure of which results in a rapid progression to frank diabetes. We used chemical (clodronate), genetics (CD169-diphtheria toxin receptor mice), or antibody-mediated (colony-stimulating factor 1 receptor α) macrophage ablation methods in diabetic (db/db) and diet-induced models of compensatory hyperinsulinemia to investigate the role of macrophages in islet remodeling. We transplanted islets devoid of macrophages into naïve diabetic mice and assessed the impact on islet vascularization. With the use of the above methods, we showed that macrophage depletion significantly and consistently compromised islet remodeling in terms of size, vascular density, and insulin secretion capacity. Depletion of islet macrophages reduced VEGF-A secretion in both human and mouse islets ex vivo, and this functionally translated to delayed revascularization upon transplantation in vivo. We revealed that islet resident macrophages were associated with islet remodeling and increased insulin secretion during diabetes. This suggests utility in harnessing islet macrophages during this phase to promote islet vascularization, remodeling, and insulin secretion.
Collapse
Affiliation(s)
- Manesh Chittezhath
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Divya Gunaseelan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Xiaofeng Zheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Singapore Eye Research Institute, Singapore General Hospital, Singapore
| | - Riasat Hasan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Vanessa S Y Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Seok Ting Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Singapore Eye Research Institute, Singapore General Hospital, Singapore
| | - Per-Olof Berggren
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Singapore Eye Research Institute, Singapore General Hospital, Singapore
- Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Bornstein
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Bernhard Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Singapore Eye Research Institute, Singapore General Hospital, Singapore
| |
Collapse
|
18
|
Li L, Krznar P, Erban A, Agazzi A, Martin-Levilain J, Supale S, Kopka J, Zamboni N, Maechler P. Metabolomics Identifies a Biomarker Revealing In Vivo Loss of Functional β-Cell Mass Before Diabetes Onset. Diabetes 2019; 68:2272-2286. [PMID: 31537525 DOI: 10.2337/db19-0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022]
Abstract
Identification of individuals with decreased functional β-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic β-cell defect remains unsuccessful. Metabolomics has emerged as a powerful tool in providing readouts of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional β-cell mass in the asymptomatic prediabetes stage. Nontargeted and targeted metabolomics were applied in both lean β-Phb2-/- (β-cell-specific prohibitin-2 knockout) mice and obese db/db (leptin receptor mutant) mice, two distinct mouse models requiring neither chemical nor dietary treatments to induce spontaneous decline of functional β-cell mass promoting progressive diabetes development. Nontargeted metabolomics on β-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic prediabetes stage, including in db/db mice, showing strong correlation with the gradual loss of β-cells. Further targeted metabolomics by gas chromatography-mass spectrometry uncovered the identity of the deoxyhexose, with 1,5-anhydroglucitol displaying the most substantial changes. In conclusion, this study identified 1,5-anhydroglucitol as associated with the loss of functional β-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in β-cells.
Collapse
Affiliation(s)
- Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Petra Krznar
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- PhD Program in Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrea Agazzi
- Theoretical Physics Department, University of Geneva, Geneva, Switzerland
| | - Juliette Martin-Levilain
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| |
Collapse
|
19
|
Lammert E, Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol 2019; 432:1407-1418. [PMID: 31711959 DOI: 10.1016/j.jmb.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
20
|
Abu-Toamih Atamni HJ, Kontogianni G, Binenbaum I, Mott R, Himmelbauer H, Lehrach H, Chatziioannou A, Iraqi FA. Hepatic gene expression variations in response to high-fat diet-induced impaired glucose tolerance using RNAseq analysis in collaborative cross mouse population. Mamm Genome 2019; 30:260-275. [PMID: 31650267 DOI: 10.1007/s00335-019-09816-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Hepatic gene expression is known to differ between healthy and type 2 diabetes conditions. Identifying these variations will provide better knowledge to the development of gene-targeted therapies. The aim of this study is to assess diet-induced hepatic gene expression of susceptible versus resistant CC lines to T2D development. Next-generation RNA-sequencing was performed for 84 livers of diabetic and non-diabetic mice of 41 different CC lines (both sexes) following 12 weeks on high-fat diet (42% fat). Data analysis revealed significant variations of hepatic gene expression in diabetic versus non-diabetic mice with significant sex effect, where 601 genes were differentially expressed (DE) in overall population (males and females), 718 genes in female mice, and 599 genes in male mice. Top prioritized DE candidate genes were Lepr, Ins2, Mb, Ckm, Mrap2, and Ckmt2 for the overall population; for females-only group were Hdc, Serpina12, Socs1, Socs2, and Mb, while for males-only group were Serpine1, Mb, Ren1, Slc4a1, and Atp2a1. Data analysis for sex differences revealed 193 DE genes in health (Top: Lepr, Cav1, Socs2, Abcg2, and Col5a3), and 389 genes DE between diabetic females versus males (Top: Lepr, Clps, Ins2, Cav1, and Mrap2). Furthermore, integrating gene expression results with previously published QTL, we identified significant variants mapped at chromosomes at positions 36-49 Mb, 62-71 Mb, and 79-99 Mb, on chromosomes 9, 11, and 12, respectively. Our findings emphasize the complexity of T2D development and that significantly controlled by host complex genetic factors. As well, we demonstrate the significant sex differences between males and females during health and increasing to extent levels during disease/diabetes. Altogether, opening the venue for further studies targets the discovery of effective sex-specific and personalized preventions and therapies.
Collapse
Affiliation(s)
- H J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - G Kontogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - I Binenbaum
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - R Mott
- Department of Genetics, University College of London, London, UK
| | - H Himmelbauer
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - H Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, 17671, Kallithea, Greece
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
21
|
Lin LC, Lee LC, Huang C, Chen CT, Song JS, Shiao YJ, Liu HK. Effects of boschnaloside from Boschniakia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152946. [PMID: 31102890 DOI: 10.1016/j.phymed.2019.152946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Boschniakia rossica is a well-known traditional Chinese medicine for tonifying kidney and improving impotence. Boschnaloside is the major iridoid glycoside in this herb but therapeutic benefits for diabetes remained to be evaluated. HYPOTHESIS/PURPOSE The current investigation aims to study the antidiabetic effect and the underlying pharmacological mechanisms. STUDY DESIGN AND METHODS Receptor binding, cAMP production, Ins secretion, glucagon-like peptide 1 (GLP-1) secretion, and dipeptidyl peptidase-4 activity assays were performed. Therapeutic benefits of orally administrated boschnaloside (150 and 300 mg/kg/day) were evaluated using severely 12-week old female diabetic db/db mice (Hemoglobin A1c >10%). RESULTS Oral treatment of boschnaloside for 4 weeks improved diabetic symptoms including fasting blood sugar, hemoglobin A1c, glucose intolerance, and Homeostatic Model Assessment of Ins Resistance, accompanied by circulating GLP-1active and adiponectin levels. In addition, bochnaloside treatment improved islet/β cell function associated with an alteration of the pancreatic and duodenal homeobox 1 level. It was shown that boschnaloside interacted with the extracellular domain of GLP-1 receptor and enhanced glucose stimulated Ins secretion. Boschnaloside also augmented the insulinotropic effect of GLP-1. Finally, the presence of boschnaloside caused a reduction of dipeptidyl peptidase-4 activity while enhanced GLP-1 secretion from STC-1 cells. CONCLUSION It appears that bochnaloside at oral dosage greater than 150 mg/kg/day exerts antidiabetic effects in vivo through modulating the action of GLP-1.
Collapse
Affiliation(s)
- Lie-Chwen Lin
- Division of Chinese Medicine Literature and Informatics, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Lin-Chien Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National YangMing University, Taipei, Taiwan, ROC; Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC; Institute of Biopharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC; Ph.D Program for the Clinical Drug Discovery from Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
22
|
Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim S, Zeltser LM, Paton AW, Paton JC, Tsai B, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P. Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 2019; 8:44532. [PMID: 31184302 PMCID: PMC6559786 DOI: 10.7554/elife.44532] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of insulin – critical to metabolic homeostasis – begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes. Our body fine-tunes the amount of sugar in our blood thanks to specialized ‘beta cells’ in the pancreas, which can release a hormone called insulin. To produce insulin, the beta cells first need to build an early version of the molecule – known as proinsulin – inside a cellular compartment called the endoplasmic reticulum. This process involves the formation of internal staples that keep the molecule of proinsulin folded correctly. Individuals developing type 2 diabetes have spikes of sugar in their blood, and so their bodies often respond by trying to make large amounts of insulin. After a while, the beta cells can fail to keep up, which brings on the full-blown disease. However, scientists have discovered that early in type 2 diabetes, the endoplasmic reticulum of beta cells can already show signs of stress; yet, the exact causes of this early damage are still unknown. To investigate this, Arunagiri et al. looked into whether proinsulin folds correctly during the earliest stages of type 2 diabetes. Biochemical experiments showed that even healthy beta cells contained some misfolded proinsulin molecules, where the molecular staples that should fold proinsulin internally were instead abnormally linking proinsulin molecules together. Further work revealed that the misfolded proinsulin was accumulating inside the endoplasmic reticulum. Finally, obese mice that were in the earliest stages of type 2 diabetes had the highest levels of abnormal proinsulin in their beta cells. Overall, the work by Arunagiri et al. suggests that large amounts of proinsulin molecules stapling themselves to each other in the endoplasmic reticulum of beta cells could be an early hallmark of the disease, and could make it get worse. A separate study by Jang et al. also shows that a protein that limits the misfolding of proinsulin is key to maintain successful insulin production in animals eating a Western-style, high fat diet. Hundreds of millions of people around the world have type 2 diabetes, and this number is rising quickly. Detecting and then fixing early problems associated with the condition may help to stop the disease in its track.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Anita Pottekat
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Fawnnie Pamenan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Gwangjin-gu, Republic of Korea
| | - Lori M Zeltser
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, United States
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States.,Department of Endocrinology and Metabolism, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
23
|
Zhang L, Fernandez-Kim SO, Beckett TL, Niedowicz DM, Kohler K, Dasuri K, Bruce-Keller AJ, Murphy MP, Keller JN. The db mutation improves memory in younger mice in a model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2157-2167. [PMID: 31034991 DOI: 10.1016/j.bbadis.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, while obesity is a major global public health problem associated with the metabolic disorder type 2 diabetes mellitus (T2DM). Chronic obesity and T2DM have been identified as invariant risk factors for dementia and late-onset AD, while their impacts on the occurrence and development of AD remain unclear. As shown in our previous study, the diabetic mutation (db, Leprdb/db) induces mixed or vascular dementia in mature to middle-aged APPΔNL/ΔNL x PS1P264L/P264L knock-in mice (db/AD). In the present study, the impacts of the db mutation on young AD mice at 10 weeks of age were evaluated. The db mutation not only conferred young AD mice with severe obesity, impaired glucose regulation and activated mammalian target of rapamycin (mTOR) signaling pathway in the mouse cortex, but lead to a surprising improvement in memory. At this young age, mice also had decreased cerebral Aβ content, which we have not observed at older ages. This was unlikely to be related to altered Aβ synthesis, as both β- and γ-secretase were unchanged. The db mutation also reduced the cortical IL-1β mRNA level and IBA1 protein level in young AD mice, with no significant effect on the activation of microglia and astrocytes. We conclude that the db mutation could transitorily improve the memory of young AD mice, a finding that may be partially explained by the relatively improved glucose homeostasis in the brains of db/AD mice compared to their counterpart AD mice, suggesting that glucose regulation could be a strategy for prevention and treatment of neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China; Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Sun-Ok Fernandez-Kim
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Tina L Beckett
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Dana M Niedowicz
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Katharina Kohler
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Kalavathi Dasuri
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Annadora J Bruce-Keller
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - M Paul Murphy
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA.
| | - Jeffrey N Keller
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
24
|
Pan Y, Wang B, Zheng J, Xiong R, Fan Z, Ye Y, Zhang S, Li Q, Gong F, Wu C, Lin Z, Li X, Pan X. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J Cell Mol Med 2018; 23:1059-1071. [PMID: 30461198 PMCID: PMC6349243 DOI: 10.1111/jcmm.14007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is important in glucose, lipid homeostasis and insulin sensitivity. However, it remains unknown whether FGF21 is involved in insulin expression and secretion that are dysregulated in type 2 diabetes mellitus (T2DM). In this study, we found that FGF21 was down-regulated in pancreatic islets of db/db mice, a mouse model of T2DM, along with decreased insulin expression, suggesting the possible involvement of FGF21 in maintaining insulin homeostasis and islet β-cell function. Importantly, FGF21 knockout exacerbated palmitate-induced islet β-cell failure and suppression of glucose-stimulated insulin secretion (GSIS). Pancreatic FGF21 overexpression significantly increased insulin expression, enhanced GSIS, improved islet morphology and reduced β-cell apoptosis in db/db mice. Mechanistically, FGF21 promoted expression of insulin gene transcription factors and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the major regulators of insulin secretion, as well as activating phosphatidylinositol 3-kinase (PI3K)/Akt signaling in islets of db/db mice. In addition, pharmaceutical inhibition of PI3K/Akt signaling effectively suppressed FGF21-induced expression of insulin gene transcription factors and SNARE proteins, suggesting an essential role of PI3K/Akt signaling in FGF21-induced insulin expression and secretion. Taken together, our results demonstrate a protective role of pancreatic FGF21 in T2DM mice through inducing PI3K/Akt signaling-dependent insulin expression and secretion.
Collapse
Affiliation(s)
- Yingying Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Jujia Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanna Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Saisai Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaoming Wu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Nelder M, Cahill F, Zhang H, Zhai G, Gulliver W, Teng W, Shan Z, Sun G. The Association Between an Addictive Tendency Toward Food and Metabolic Characteristics in the General Newfoundland Population. Front Endocrinol (Lausanne) 2018; 9:661. [PMID: 30473679 PMCID: PMC6237829 DOI: 10.3389/fendo.2018.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/23/2018] [Indexed: 12/05/2022] Open
Abstract
Background: Our previous study of 29 obese food addiction (FA) patients found that FA is associated with lipid profiles and hormones which may be a factor in cardiovascular disease (CVD) and insulin resistance (IR). However, there is currently no data available regarding the relationship between FA symptoms and metabolic characteristics of CVD and IR in the general population. We designed this study to investigate the correlation between FA symptoms with lipid profiles and IR in men and women of the general Newfoundland population. Methods: 710 individuals (435 women and 275 men) recruited from the general Newfoundland population were used in analysis. FA symptoms were evaluated using the Yale Food Addiction Scale (YFAS). Glucose, insulin, HDL, LDL, total cholesterol and triglycerides levels were measured. IR was evaluated using the homeostatic model of assessment (HOMA). Participants were grouped by sex and menopausal status. Age, physical activity, calories and total % body fat were controlled. Results: Partial correlation analysis revealed that in men, YFAS symptom counts were significantly correlated with HOMA-β (r = 0.196, p = 0.021), triglycerides (r = 0.140, p = 0.025) and inversely correlated with HDL (r = -0.133, p = 0.033). After separating by menopausal status, pre-menopausal women exhibited no correlations and post-menopausal women had a significantcorrelation with triglycerides (r = 0.198, p = 0.016). Conclusion: FA is significantly correlated with several markers of metabolic disturbance in men and to a lesser extent, post-menopausal women, in the general population. Further research is required to explain sex specific associations and elucidate any potentially causal mechanisms behind this correlation.
Collapse
Affiliation(s)
- Matthew Nelder
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
- *Correspondence: Matthew Nelder
| | - Farrell Cahill
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hongwei Zhang
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Guangju Zhai
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Wayne Gulliver
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, Endocrine Institute, First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, Endocrine Institute, First Hospital of China Medical University, Shenyang, China
| | - Guang Sun
- Complex Disease Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
26
|
Lei CL, Kellard JA, Hara M, Johnson JD, Rodriguez B, Briant LJ. Beta-cell hubs maintain Ca 2+ oscillations in human and mouse islet simulations. Islets 2018; 10:151-167. [PMID: 30142036 PMCID: PMC6113907 DOI: 10.1080/19382014.2018.1493316] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Islet β-cells are responsible for secreting all circulating insulin in response to rising plasma glucose concentrations. These cells are a phenotypically diverse population that express great functional heterogeneity. In mice, certain β-cells (termed 'hubs') have been shown to be crucial for dictating the islet response to high glucose, with inhibition of these hub cells abolishing the coordinated Ca2+ oscillations necessary for driving insulin secretion. These β-cell hubs were found to be highly metabolic and susceptible to pro-inflammatory and glucolipotoxic insults. In this study, we explored the importance of hub cells in human by constructing mathematical models of Ca2+ activity in human islets. Our simulations revealed that hubs dictate the coordinated Ca2+ response in both mouse and human islets; silencing a small proportion of hubs abolished whole-islet Ca2+ activity. We also observed that if hubs are assumed to be preferentially gap junction coupled, then the simulations better adhere to the available experimental data. Our simulations of 16 size-matched mouse and human islet architectures revealed that there are species differences in the role of hubs; Ca2+ activity in human islets was more vulnerable to hub inhibition than mouse islets. These simulation results not only substantiate the existence of β-cell hubs, but also suggest that hubs may be favorably coupled in the electrical and metabolic network of the islet, and that targeted destruction of these cells would greatly impair human islet function.
Collapse
Affiliation(s)
- Chon-Lok Lei
- Doctoral Training Centre, University of Oxford, Oxford, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Joely A. Kellard
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Linford J.B. Briant
- Department of Computer Science, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
27
|
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab 2017; 19 Suppl 1:115-123. [PMID: 28880475 DOI: 10.1111/dom.13001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β-cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β-cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi-SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non-fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub-PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β-cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β-cells.
Collapse
|
28
|
Chen FF, Wang JT, Zhang LX, Xing SF, Wang YX, Wang K, Deng SL, Zhang JQ, Tang L, Wu HS. Oleanolic acid derivative DKS26 exerts antidiabetic and hepatoprotective effects in diabetic mice and promotes glucagon-like peptide-1 secretion and expression in intestinal cells. Br J Pharmacol 2017. [PMID: 28627773 DOI: 10.1111/bph.13921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) is an important target for diabetes therapy based on its key role in maintaining glucose and lipid homeostasis. This study was designed to investigate antidiabetic and hepatoprotective effects of a novel oleanolic acid derivative DKS26 in diabetic mice and elucidate its underlying GLP-1 related antidiabetic mechanisms in vitro and in vivo. EXPERIMENTAL APPROACH The therapeutic effects of DKS26 were investigated in streptozotocin (STZ)-induced and db/db diabetic mouse models. Levels of plasma glucose, glycosylated serum protein (GSP), lipid profiles, insulin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), oral glucose tolerance (OGT), pancreatic islets and hepatic histopathological morphology, liver lipid levels and expression of pro-inflammatory cytokines were assessed. Intestinal NCI-H716 cells and diabetic models were used to further validate its potential GLP-1-related antidiabetic mechanisms. KEY RESULTS DKS26 treatment (100 mg·kg-1 ·day-1 ) decreased plasma levels of glucose, GSP, ALT and AST; ameliorated OGT and plasma lipid profiles; augmented plasma insulin levels; alleviated islets and hepatic pathological morphology; and reduced liver lipid accumulation, inflammation and necrosis in vivo. Furthermore, DKS26 enhanced GLP-1 release and expression, accompanied by elevated levels of cAMP and phosphorylated PKA in vitro and in vivo. CONCLUSION AND IMPLICATIONS DKS26 exerted hypoglycaemic, hypolipidaemic and islets protective effects, which were associated with an enhanced release and expression of GLP-1 mediated by the activation of the cAMP/PKA signalling pathway, and alleviated hepatic damage by reducing liver lipid levels and inflammation. These findings firmly identified DKS26 as a new viable therapeutic option for diabetes control.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ta Wang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Li-Xia Zhang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Fang Xing
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Xia Wang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Li Deng
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lei Tang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hao-Shu Wu
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Droz BA, Sneed BL, Jackson CV, Zimmerman KM, Michael MD, Emmerson PJ, Coskun T, Peterson RG. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse. PLoS One 2017. [PMID: 28640904 PMCID: PMC5480996 DOI: 10.1371/journal.pone.0179808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity in many current pre-clinical animal models of obesity and diabetes is mediated by monogenic mutations; these are rarely associated with the development of human obesity. A new mouse model, the FATZO mouse, has been developed to provide polygenic obesity and a metabolic pattern of hyperglycemia and hyperinsulinemia, that support the presence of insulin resistance similar to metabolic disease in patients with insulin resistance/type 2 diabetes. The FATZO mouse resulted from a cross of C57BL/6J and AKR/J mice followed by selective inbreeding for obesity, increased insulin and hyperglycemia. Since many clinical studies have established a close link between higher body weight and the development of type 2 diabetes, we investigated whether time to progression to type 2 diabetes or disease severity in FATZO mice was dependent on weight gain in young animals. Our results indicate that lighter animals developed metabolic disturbances much slower and to a lesser magnitude than their heavier counterparts. Consumption of a diet containing high fat, accelerated weight gain in parallel with disease progression. A naturally occurring and significant variation in the body weight of FATZO offspring enables these mice to be identified as low, mid and high body weight groups at a young age. These weight groups remain into adulthood and correspond to slow, medium and accelerated development of type 2 diabetes. Thus, body weight inclusion criteria can optimize the FATZO model for studies of prevention, stabilization or treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Brian A. Droz
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Bria L. Sneed
- Ball State University, Muncie, Indiana, United States of America
| | - Charles V. Jackson
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
| | - Karen M. Zimmerman
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
| | - M. Dodson Michael
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Paul J. Emmerson
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Richard G. Peterson
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Xu Y, Toomre DK, Bogan JS, Hao M. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis. J Cell Mol Med 2017; 21:2950-2962. [PMID: 28544529 PMCID: PMC5661106 DOI: 10.1111/jcmm.13207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Bioengineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Derek K Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mingming Hao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Ferdaoussi M, MacDonald PE. Toward Connecting Metabolism to the Exocytotic Site. Trends Cell Biol 2016; 27:163-171. [PMID: 27932063 DOI: 10.1016/j.tcb.2016.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
Within cells the regulated exocytosis of secretory granules controls multiple physiological functions, including endocrine hormone secretion. Release of the glucose-regulating hormone insulin from pancreatic islet β cells is critical for whole-body metabolic homeostasis. Impaired insulin secretion appears early in the progression to type 2 diabetes (T2D). Key mechanisms that control the β-cell exocytotic response, mediating the long-known but little understood metabolic amplification of insulin secretion, are becoming clearer. Recent insights indicate a convergence of metabolism-driven signals, such as lipid-derived messengers and redox-dependent deSUMOylation, at the plasma membrane to augment Ca2+-dependent insulin exocytosis. These pathways have important implications for the metabolic control of hormone secretion, for the functional compensation that occurs in obesity, and for impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|