1
|
Zhang D, Kou W, Luo S, Chen J, An X, Fang S, Liang X. The effect of ambient temperature on lipid metabolism in children: From a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119692. [PMID: 39068968 DOI: 10.1016/j.envres.2024.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dyslipidemia is increasingly recognized as an essential risk factor for cardiovascular diseases. However, few studies illustrated the effects of ambient temperature exposure (TE) on lipid levels in children. The study aimed to examine the association between ambient TE and lipid levels in children. METHODS Based on a prospective cohort, a total of 2423 children (with 4466 lipids measure person-time) were collected from 2014 to 2019. The meteorological observation data and adjusted variables were collected. Mixed-effect models and generalized additive mixed model (GAMM) were applied to investigate the association between ambient TE and lipid levels. RESULTS A significant negative association was observed between TE and low-density lipoprotein cholesterol (LDL-C) or total cholesterol (TC) levels both in all children [LDL-C, β(95%CI) = -0.350(-0.434,-0.265), P < 0.001; TC, β(95%CI) = -0.274(-0.389,-0.160), P < 0.001] and by different sex group. However, no significant association was found in low-density lipoprotein cholesterol (HDL-C) or triglycerides (TG) levels. The estimated optimal ambient TEs for LDL-C were 18.273 °C and 18.024 °C for girls and boys, respectively. For TC, the optimal ambient TEs were 17.949 °C and 18.024 °C, respectively. With ambient TE decreased, the risk of dyslipidemia increased for both boys [OR = 0.032(0.006,0.179), P < 0.001] and girls [OR = 0.582(0.576,0.587), P < 0.001]. CONCLUSION This study provided a comprehensive illustration about the associations between ambient TE and lipid levels in different sex and ages from a prospective cohort study. The findings will provide evidence for the government to prevent dyslipidemia in vulnerable children through regulating TE.
Collapse
Affiliation(s)
- Di Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xizhou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shenying Fang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
2
|
Zhang AC, De Silva MEH, MacIsaac RJ, Roberts L, Kamel J, Craig JP, Busija L, Downie LE. Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: a systematic review and meta-analysis. Nutr Rev 2020; 78:323-341. [PMID: 31532492 DOI: 10.1093/nutrit/nuz054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Peripheral nerve damage can occur in a variety of systemic conditions and can have a profound impact on functional and psychological health. Currently, therapeutic interventions for peripheral nerve damage are limited. OBJECTIVE The aim of this systematic review, conducted in accordance with the Cochrane Collaboration's handbook and reported according to the PRISMA checklist, was to evaluate the efficacy and safety of omega-3 oral supplements for improving peripheral nerve structure and function. DATA SOURCES PubMed, Embase, and Cochrane databases, along with clinical trial registries, were searched from inception to February 2019. Evidence was identified, critically appraised, and synthesized, and the certainty of evidence was appraised using the Grading of Recommendations Assessment, Development and Evaluation approach. STUDY SELECTION Randomized controlled trials assessing the effects of omega-3 oral supplementation on outcomes of peripheral nerve structure, peripheral nerve function, or both were eligible for inclusion. Titles and abstracts of identified articles were independently assessed for potential eligibility by 2 review authors. For studies judged as eligible or potentially eligible, full text articles were retrieved and independently assessed by 2 review authors to determine eligibility; disagreements were resolved by consensus. DATA EXTRACTION Fifteen trials were included. Two clinically similar studies that investigated the effect of omega-3 supplementation in individuals receiving chemotherapy were meta-analyzed. Pooled data showed a reduced incidence of peripheral neuropathy (RR = 0.58; 95%CI, 0.43-0.77) and a preservation of sensory nerve action potential amplitudes with omega-3 supplementation compared with placebo (MD = 4.19 µV; 95%CI; 2.19-6.19). CONCLUSION This review finds, with low certainty, that omega-3 supplementation attenuates sensory loss and reduces the incidence of neuropathy secondary to oxaliplatin and paclitaxel treatment relative to placebo. There is currently limited evidence to ascertain whether omega-3 supplementation is beneficial in other systemic conditions characterized by peripheral nerve damage. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD 42018086297.
Collapse
Affiliation(s)
- Alexis Ceecee Zhang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | | | - Richard J MacIsaac
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Leslie Roberts
- Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Jordan Kamel
- Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ljoudmila Busija
- Biostatistics Unit, Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
4
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
5
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
6
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
7
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|