1
|
Augustyniak K, Lesniak M, Golan MP, Latka H, Wojtan K, Zdanowski R, Kubiak JZ, Malek K. Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies. Int J Mol Sci 2024; 25:12274. [PMID: 39596337 PMCID: PMC11595028 DOI: 10.3390/ijms252212274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Adipocytes derived from 3T3-L1 cells are a gold standard for analyses of adipogenesis processes and the metabolism of fat cells. A widely used histological and immunohistochemical staining and mass spectrometry lipidomics are mainly aimed for examining lipid droplets (LDs). Visualizing other cellular compartments contributing to the cellular machinery requires additional cell culturing for multiple labeling. Here, we present the localization of the intracellular structure of the 3T3-L1-derived adipocytes utilizing vibrational spectromicroscopy, which simultaneously illustrates the cellular compartments and provides chemical composition without extensive sample preparation and in the naïve state. Both vibrational spectra (FTIR-Fourier transform infrared and RS-Raman scattering spectroscopy) extended the gathered chemical information. We proved that both IR and RS spectra provide distinct chemical information about lipid content and their structure. Despite the expected presence of triacylglycerols and cholesteryl esters in lipid droplets, we also estimated the length and unsaturation degree of the fatty acid acyl chains that were congruent with known MS lipidomics of these cells. In addition, the clustering of spectral images revealed that the direct surroundings around LDs attributed to lipid-associated proteins and a high abundance of mitochondria. Finally, by using quantified markers of biomolecules, we showed that the fixative agents, paraformaldehyde and glutaraldehyde, affected the cellular compartment differently. We concluded that PFA preserves LDs better, while GA fixation is better for cytochromes and unsaturated lipid analysis. The proposed analysis of the spectral images constitutes a complementary tool for investigations into the structural and molecular features of fat cells.
Collapse
Affiliation(s)
- Karolina Augustyniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. Stanislawa Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Lesniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
| | - Maciej P. Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
- Institute of Psychology, The Maria Grzegorzewska University, Szczesliwicka 40, 02-353 Warsaw, Poland
| | - Hubert Latka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| | - Katarzyna Wojtan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), French National Centre for Scientific Research (CNRS), Faculty of Medicine, University of Rennes, UMR 6290, 35043 Rennes, France
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| |
Collapse
|
2
|
Xu FX, Rathbone EG, Fu D. Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators. J Phys Chem B 2023; 127:2187-2197. [PMID: 36883604 PMCID: PMC10144064 DOI: 10.1021/acs.jpcb.2c09105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a label-free quantitative optical technique for imaging molecular distributions in cells and tissues by probing their intrinsic vibrational frequencies. Despite its usefulness, existing SRS imaging techniques have limited spectral coverage due to either a wavelength tuning constraint or narrow spectral bandwidth. High-wavenumber SRS imaging is commonly used to map lipid and protein distribution in biological cells and visualize cell morphology. However, to detect small molecules or Raman tags, imaging in the fingerprint region or "silent" region, respectively, is often required. For many applications, it is desirable to collect SRS images in two Raman spectral regions simultaneously for visualizing the distribution of specific molecules in cellular compartments or providing accurate ratiometric analysis. In this work, we present an SRS microscopy system using three beams generated by a femtosecond oscillator to acquire hyperspectral SRS image stacks in two arbitrary vibrational frequency bands, between 650-3280 cm-1, simultaneously. We demonstrate potential biomedical applications of the system in investigating fatty acid metabolism, cellular drug uptake and accumulation, and lipid unsaturation level in tissues. We also show that the dual-band hyperspectral SRS imaging system can be adapted for the broadband fingerprint region hyperspectral imaging (1100-1800 cm-1) by simply adding a modulator.
Collapse
Affiliation(s)
- Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily G Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Paul A, Chanclón B, Brännmark C, Wittung-Stafshede P, Olofsson CS, Asterholm IW, Parekh SH. Comparing lipid remodeling of brown adipose tissue, white adipose tissue, and liver after one-week high fat diet intervention with quantitative Raman microscopy. J Cell Biochem 2023; 124:382-395. [PMID: 36715685 DOI: 10.1002/jcb.30372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.
Collapse
Affiliation(s)
- Alexandra Paul
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Belén Chanclón
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Brännmark
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
4
|
Stokie JR, Abbott G, Howlett KF, Hamilton DL, Shaw CS. Intramuscular lipid utilization during exercise: a systematic review, meta-analysis, and meta-regression. J Appl Physiol (1985) 2023; 134:581-592. [PMID: 36656983 DOI: 10.1152/japplphysiol.00637.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intramuscular lipid (IMCL) utilization during exercise was controversial as numerous studies did not observe a decline in IMCL content post-exercise when assessed in muscle biopsies using biochemical techniques. Contemporary techniques including immunofluorescence microscopy and 1H-magnetic resonance spectroscopy (1H-MRS) offer advantages over biochemical techniques. The primary aim of this systematic review, meta-analysis, and meta-regression was to examine the net degradation of IMCL in response to an acute bout of cycling exercise in humans, as assessed with different analytical approaches. A secondary aim was to explore the factors influencing IMCL degradation including feeding status, exercise variables, and participant characteristics. A total of 44 studies met the inclusion criteria using biochemical, immunofluorescence, and 1H-MRS techniques. A meta-analysis was completed using a random effects model and percentage change in IMCL content calculated from the standardized mean difference. Cycling exercise resulted in a net degradation of IMCL regardless of technique (total effect -23.7%, 95% CI = -28.7 to -18.7%) and there was no difference when comparing fasted versus fed-state exercise (P > 0.05). IMCL degradation using immunofluorescence techniques detected larger effects in type I fibers compared with whole muscle using biochemical techniques (P = 0.003) and in type I fibers compared with type II fibers (P < 0.001). Although IMCL degradation was associated with exercise duration, V̇o2max, and BMI, none of these factors independently related to the change in IMCL content. These findings provide strong evidence that the analytical approach can influence the assessment of IMCL degradation in human skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Jayden R Stokie
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David L Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Park CW, Jeon S, Kwon SH, Jung JH, Seol JE, Park CS, Cho SK, Ko DK. Comparative analysis of dermal collagen and lipids in cereblon ablated mice using a multimodal nonlinear optical system. JOURNAL OF BIOPHOTONICS 2023; 16:e202200139. [PMID: 36127858 DOI: 10.1002/jbio.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
By utilizing a multimodal nonlinear optical system that combines coherent anti-Stokes Raman scattering and second harmonic generation to investigate biological characteristics of dermal tissues ex vivo, we demonstrate the potential feasibility of using this optical approach as a powerful new investigative tool for future biomedical research. For this study, our optical system was utilized for the first time to analyze lipid and collagen profiles in cereblon knockout (KO) mouse skin, and we were able to discover significant alterations in the number of carbon-carbon double bonds (wild-type vs. cereblon KO; NCC : 0.75 vs. 0.85) of skin fatty acids in triacylglycerides as well as changes in dermal collagen fibers (25% reduction in cereblon KO). By adopting our optical system to biological studies, we provide researchers with another diagnostic approach to validate their experimental results, which will significantly advance the state of biomedical research.
Collapse
Affiliation(s)
- Chang Woo Park
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seungje Jeon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea
| | - Seong-Hoon Kwon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk, South Korea
| | - Jun-Hyung Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jung Eun Seol
- Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea
- Department of Dermatology, Inje University Busan Paik Hospital, Inje University, Busan, South Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Steve K Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Do-Kyeong Ko
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
6
|
The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00018. [PMID: 36710921 PMCID: PMC9869962 DOI: 10.1097/in9.0000000000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Microglia are a unique population of immune cells resident in the brain that integrate complex signals and dynamically change phenotypes in response to the brain microenvironment. In recent years, single-cell sequencing analyses have revealed profound cellular heterogeneity and context-specific transcriptional plasticity of microglia during brain development, aging, and disease. Emerging evidence suggests that microglia adapt phenotypic plasticity by flexibly reprogramming cellular metabolism to fulfill distinct immune functions. The control of lipid metabolism is central to the appropriate function and homeostasis of the brain. Microglial lipid metabolism regulated by apolipoprotein E (ApoE), a crucial lipid transporter in the brain, has emerged as a critical player in regulating neuroinflammation. The ApoE gene allelic variant, ε4, is associated with a greater risk for neurodegenerative diseases. In this review, we explore novel discoveries in microglial lipid metabolism mediated by ApoE. We elaborate on the functional impact of perturbed microglial lipid metabolism on the underlying pathogenesis of brain aging and disease.
Collapse
|
7
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|