1
|
Song S, Zhang C, Chen Z, Wei J, Tan H, Li X. Hydrolysis and photolysis of bentazone in aqueous abiotic solutions and identification of its degradation products using quadrupole time-of-flight mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10127-10135. [PMID: 30746627 DOI: 10.1007/s11356-019-04232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Hydrolysis and photolysis of bentazone in abiotic aqueous solutions were examined under laboratory conditions. Hydrolysis was studied in different buffer solutions (pH 4.0 ± 0.1, 7.0 ± 0.1, and 9.0 ± 0.1), at different temperatures (15 °C ± 2 °C, 25 °C ± 2 °C, 35 °C ± 2 °C, and 45 °C ± 2 °C), and at different Fe3+ concentrations (1, 5, and 10 mg/L). Photolysis was assessed in different buffer solutions and at different solvent (methanol and ethyl acetate) concentrations (10%, 20%, and 30%) or Fe3+ (1, 5, and 10 mg/L) concentrations and under mercury or xenon light irradiation. Hydrolysis half-lives ranged 46-99 days at three different conditions. Photolysis half-lives ranged 2.3-7.5 h in three different conditions under mercury and xenon irradiation. Hydrolysis and photolysis of bentazone were accelerated by both alkaline conditions and elevated temperatures, and solvents and Fe3+ strongly enhanced bentazone degradation. Photodecomposition was much faster under a mercury lamp than under a xenon lamp. N-methyl bentazone and 6-OH bentazone/8-OH bentazone were identified as degradation products using UPLC-Q-TOF-MS. The data generated from this study could be useful for risk assessment of pesticides in the environment.
Collapse
Affiliation(s)
- Shiming Song
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Cuifang Zhang
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Zhaojie Chen
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Jie Wei
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Huihua Tan
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Xuesheng Li
- Institute of Pesticide and Environmental Toxicology, Guangxi Key Laboratory Cultivation Base of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
2
|
Zeng LR, Shi LH, Meng XG, Xu J, Jia GF, Gui T, Zhang YP, Hu DY. Evaluation of photolysis and hydrolysis of pyraclostrobin in aqueous solutions and its degradation products in paddy water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:317-325. [PMID: 30729870 DOI: 10.1080/03601234.2019.1571360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography-photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1-115.5 days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12 h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.
Collapse
Affiliation(s)
- Ling R Zeng
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - Li H Shi
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - Xin G Meng
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - J Xu
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - Gui F Jia
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - T Gui
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - Yu P Zhang
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| | - De Y Hu
- a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , P.R. China
| |
Collapse
|
3
|
Rubio A, Cardo MV, Carbajo AE, Vezzani D. Assessment of combined tools and strategies for Aedes aegypti control with low environmental impact. Parasitol Res 2019; 118:411-420. [PMID: 30607607 DOI: 10.1007/s00436-018-6178-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022]
Abstract
The control of the mosquito vector Aedes aegypti L. (Diptera: Culicidae) is the main action against dengue, chikungunya, and Zika. The excessive use of conventional insecticides has promoted the development of other control methods and strategies with lower environmental impact. We evaluated the effectiveness of applying triflumuron 1 ppm and emptying water-filled containers in a field trial in temperate Argentina. Both control methods were implemented either individually or combined and regularly from the beginning of the mosquito reproductive season or once it reached peak abundance. The impact on a non-target midge of the genus Chironomus was also tested. The highest reductions of Ae. aegypti were achieved in treatments which included triflumuron. This effect was stronger when applied from the beginning of the reproductive season, with < 1.3% of positive containers throughout the entire season. No enhancing effects were obtained when combining both control methods. Treatments with triflumuron were not completely innocuous for the non-target species, with Chironomus sp. more susceptible to treatments including triflumuron applied from the beginning of the reproductive season than all others. Sharp reductions of mosquito populations in urban environments with high density of water-filled containers are possible with minimum container management efforts, by applying triflumuron 1 ppm every 6 weeks. In temperate urban settings, better results can be obtained when applications begin early in the reproductive season of the mosquito vector Aedes aegypti.
Collapse
Affiliation(s)
- Alejandra Rubio
- Ecología de Enfermedades Transmitidas por Vectores, Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1400 (1650), General San Martín, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - María V Cardo
- Ecología de Enfermedades Transmitidas por Vectores, Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1400 (1650), General San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Aníbal E Carbajo
- Ecología de Enfermedades Transmitidas por Vectores, Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1400 (1650), General San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Darío Vezzani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNCPBA - CIC), Tandil, Buenos Aires, Argentina
| |
Collapse
|
4
|
Shi Y, Yue Y, Cao H, Tang F, Hua R, Wu X, Tang J. Photodegradation kinetics of octachlorodipropyl ether in organic solvents using an HPTLC method. JPC-J PLANAR CHROMAT 2012. [DOI: 10.1556/jpc.25.2012.2.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Hu JY, Deng ZB, Qin DM. Determination of diacylhydrazines-type insect growth regulator JS-118 residues in cabbage and soil by high performance liquid chromatography with DAD detection. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:803-807. [PMID: 19626262 DOI: 10.1007/s00128-009-9831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/08/2009] [Indexed: 05/28/2023]
Abstract
JS-118 is a diacylhydrazines-type insect growth regulator used extensively in China now. An analytical method for residues determination of JS-118 in cabbage and soil samples by high performance liquid chromatography with DAD detection was established and optimized. Primary secondary amine solid phase extraction cartridge was used for sample preparation. Mean recoveries for the analyte ranged from 96.6% to 107.0% with CV value less than 4.7%. The limit of quantification is 0.01 mg/kg. Direct confirmation of JS-118 residues in samples was realized by high performance liquid chromatography-mass spectrometry. The proposed method is simple, rapid and reliable to perform and could be utilized for monitoring of pesticides residues.
Collapse
Affiliation(s)
- J-Y Hu
- School of Applied Science, University of Science and Technology Beijing, 100083 Beijing, China.
| | | | | |
Collapse
|