1
|
Gong Z, Wen J, Ji X. A META analysis on the efficacy of functional materials for soil chromium remediation. CHEMOSPHERE 2024; 362:142776. [PMID: 38969225 DOI: 10.1016/j.chemosphere.2024.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Metallic chromium pollution in soil is widespread, which aroused intensive research in recent decades. In mainstream research, most studies use materials with a reducing ability to adsorb and reduce hexavalent chromium. However, comprehensive analyses and systematic verifications of these different materials are scarce. Therefore, this study conducted a meta-analysis of relevant papers published from 2013 to October 2024 to compare and analyze the performance and usage conditions of some common materials, such as iron-based materials, mineral inorganic materials, organic materials, and layered double hydroxide materials. We synthesized 31 papers for 186 pairwise comparisons and selected the Standardized Mean Difference (SMD) as the appropriate effect size for mean-to-mean comparisons. Fe-based materials had the most stable performance based on its numerous data support, while organic materials had the worst performance. The difference in performance between inorganic mineral materials was the greatest, which was closely related to the selection of components. The difference in the effectiveness of inorganic materials was the greatest, which was closely related to the selection of components and there was room for further improvement. Through further analysis of the impact of environmental factors on material performance, it can be concluded that the effect of the material was better under alkaline, non-sandy, low organic matter, and high CEC soil conditions.
Collapse
Affiliation(s)
- Zhixuan Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Xiaodi Ji
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
2
|
Aththanayake AMKCB, Rathnayake IVN, Deeyamulla MP, Megharaj M. Staphylococcus edaphicus KCB02A11 incorporated with natural adsorbents: first report on its tolerance and removal of hexavalent chromium [Cr(VI)]. World J Microbiol Biotechnol 2023; 39:173. [PMID: 37115249 DOI: 10.1007/s11274-023-03614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Deteriorating the quality of different parts of the ecosystem due to toxic metals is a serious global issue. Hexavalent chromium is a metal that can cause adverse effects on all living beings, including plants, animals, and microorganisms, on exposure to high concentrations for prolonged periods. Removing hexavalent chromium from various types of wastes is challenging; hence the present study investigated the use of bacteria incorporated with selected natural substrates in removing hexavalent chromium from water. Isolated Staphylococcus edaphicus KCB02A11 has shown higher removal efficiency with a wide hexavalent chromium range (0.025-8.5 mg/L) within 96 h. Incorporating the isolated strain with natural substrates commonly found in the environment (hay and wood husk) showed high removal potential [100% removal with 8.5 mg/L of Cr(VI)], even within less than 72 h, with the formation of biofilms on the used substrates applied for metal removal on a large scale for prolonged periods. This study is the first report investigating hexavalent chromium tolerance and removal by Staphylococcus edaphicus KCB02A11.
Collapse
Affiliation(s)
- A M K C B Aththanayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - I V N Rathnayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka.
| | - M P Deeyamulla
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, ATC Building, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139060. [PMID: 32498182 DOI: 10.1016/j.scitotenv.2020.139060] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Various types of biochar have been widely used to remediate soil contamination from heavy metals (HMs) and to reduce HM mobility and bioavailability in soils in recent years. Most researchers have paid attention to the beneficial effects of biochar during the remediation process, but few have emphasized their negative effects and the challenges for their application. In this review, the negative effects and challenges of applying biochar for the remediation of HM-contaminated soils are thoroughly summarized and discussed, including the changeable characteristics of biochar, biochar over-application, toxic substances in biochar, activation of some HMs in soils by biochar, nonspecific adsorption, and the negative influences of biochar on soil microorganisms and plants. In addition, further research directions and several recommendations (standardization, long-term field experiments, mechanisms research and designer biochars) were also proposed to enable the large-scale application of biochar for the remediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China; Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yidan Liu
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Junnan Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Chaosheng Zhang
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| |
Collapse
|
4
|
Wang Y, Ma X, Wang J, Cheng S, Ren Q, Zhan W, Wang Y. Effects of Mercapto-functionalized Nanosilica on Cd Stabilization and Uptake by Wheat Seedling (Triticum aestivum L.) in an Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:860-864. [PMID: 31605159 DOI: 10.1007/s00128-019-02729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a pot-culture experiment was conducted to investigate the influences of mercapto-functionalized nanosilica (MPTS/nano-silica) on Cd stabilization and uptake by wheat seedling. Four different dosages of MPTS/nano-silica were applied: 0%, 0.3%, 0.6% and 1% (w/w), and the changes of DTPA-extractable Cd in soil, soil properties, wheat biomass, and uptake of Cd to wheat tissues (shoots and roots) were measured throughout the experiment. The results showed that the application of MPTS/nano-silica (at dose of 1%) reduced the DTPA-extractable Cd from 4.21 to 1.45 mg/kg in the soil. Whereas the addition of MPTS/nano-silica hardly changed soil properties and slightly decreased the biomass of wheat seedling. In addition, Cd concentration in wheat tissues decreased from 6.388 to 2.625 mg/kg for shoot, and from 18.622 to 6.368 mg/kg for root. These results indicated that MPTS/nano-silica is an ideal candidate for remediation of Cd contaminated agricultural soil.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng, Henan, 475004, China
| | - Xiaoyu Ma
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Junnan Wang
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Shanshan Cheng
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Qiang Ren
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yansong Wang
- Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Wang Y, Li F, Song J, Xiao R, Luo L, Yang Z, Chai L. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2143-2153. [PMID: 29651760 DOI: 10.1007/s10653-018-0089-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/12/2018] [Indexed: 05/26/2023]
Abstract
Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
- School of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Institute of sustainable development in agriculture and rural area, Henan University, Kaifeng, 475004, Henan, China
| | - Fangfang Li
- Institute of sustainable development in agriculture and rural area, Henan University, Kaifeng, 475004, Henan, China
| | - Jian Song
- Institute of sustainable development in agriculture and rural area, Henan University, Kaifeng, 475004, Henan, China
| | - Ruiyang Xiao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Lin Luo
- School of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Liyuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| |
Collapse
|
6
|
Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. ENVIRONMENT INTERNATIONAL 2017; 105:43-55. [PMID: 28500873 DOI: 10.1016/j.envint.2017.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 05/24/2023]
Abstract
Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|