1
|
Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, Siddiqui MH, Ali HM, Shabbir Z, Ali A, Ahmed S, Kumar R. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119413. [PMID: 35525515 DOI: 10.1016/j.envpol.2022.119413] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Current research reveals the positive role of iron oxide nanoparticles (IONPs) and selenium (Se) in extenuation of arsenic (As) induced toxicity in Cucumis melo. C. melo plants grown in As spiked soil (20 mg kg-1 As) showed reduced growth, chlorophyll (Chl) content, photosynthetic rate, stomatal conductivity and transpiration. On the other hand, the alone applications of IONPs or Se improved growth and physiochemical parameters of C. melo plants. Additionally, exogenous application IONPs and Se synergistically improved the activity of antioxidative enzymes and glyoxalase system in C. melo plants. In addition, the collective treatment of IONPs and Se reduced As uptake, enhanced rate of photosynthesis and increased gas exchange attributes of C. melo plants under As stress. Interactive effect of IONPs and Se regulated reduced glutathione (GSH), oxidized glutathione (GSSG) and ascorbate (AsA) content in C. melo plants exposed to As-contaminated Soil. IONPs and Se treatment also regulated expression of respiratory burst oxidase homologue D (RBOHD) gene, chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR). Therefore, the combined treatment of IONPs and Se may enhance the growth of crop plants by alleviating As stress.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO-II office, University of the Punjab, Lahore, Pakistan
| | | | - Musarrat Ramzan
- Department of Botany, Islamia University Bahawalpur, Pakistan
| | - Iqtidar Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zunera Shabbir
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, USA
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Pakistan
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
2
|
González-Moscoso M, Martínez-Villegas NV, Cadenas-Pliego G, Benavides-Mendoza A, Rivera-Cruz MDC, González-Morales S, Juárez-Maldonado A. Impact of Silicon Nanoparticles on the Antioxidant Compounds of Tomato Fruits Stressed by Arsenic. Foods 2019; 8:foods8120612. [PMID: 31771217 PMCID: PMC6963759 DOI: 10.3390/foods8120612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tomato fruit is rich in antioxidant compounds such as lycopene and β-carotene. The beneficial effects of the bioactive compounds of tomato fruit have been documented as anticancer activities. The objective of this research was to determine whether arsenic (As) causes changes in the content of antioxidant compounds in tomato fruits and whether Silicon nanoparticles (SiO2 NPs) positively influence them. The effects on fruit quality and non-enzymatic antioxidant compounds were determined. The results showed that As decreased the oxide-reduction potential (ORP), while lycopene and β-carotene were increased by exposure to As at a low dose (0.2 mg L-1), and proteins and vitamin C decreased due to high doses of As in the interaction with SiO2 NPs. A dose of 250 mg L-1 of SiO2 NPs increased glutathione and hydrogen peroxide (H2O2), and phenols decreased with low doses of As and when they interacted with the NPs. As for the flavonoids, they increased with exposure to As and SiO2 NPs. The total antioxidant capacity, determined by the ABTS (2,2´-azino-bis[3-ethylbenzthiazolin-6-sulfonic acid]) test, showed an increase with the highest dose of As in the interaction with SiO2 NPs. The application of As at low doses induced a greater accumulation of bioactive compounds in tomato fruit; however, these compounds decreased in high doses as well as via interaction with SiO2 NPs, indicating that there was an oxidative burst.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Doctorado en Ciencias en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| | | | | | | | | | - Susana González-Morales
- CONACyT-Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico
- Correspondence: or ; Tel.: +52-844-411-0317
| |
Collapse
|
3
|
Lee MC, Libatique MJH, Yeh SY. The Effect of Environmental Factors on Total Arsenic Accumulation in Sarcodia suiae, Rhodophyta. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:385-390. [PMID: 30554351 DOI: 10.1007/s00128-018-2520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Little is known about the effects of environmental factors on total arsenic (TAs) accumulation in marine Rhodophyta. The effects of five environmental factors (temperature, light intensity, pH, exposure duration, and phosphate) at various As(III) concentrations were investigated in Sarcodia suiae. The highest TAs accumulations were recorded at 25°C, a luminance of 80 µmol photons m-2 s-1, and a pH of 8. TAs uptake increased significantly over time. However, a higher phosphate concentration reduced TAs accumulation. These data show that the extent of TAs accumulation depends on various environmental factors. Hence, our results suggest a potential in arsenic recovery process in wastewater treatments. S. suiae may provide a new means of reducing levels of arsenic in contaminated water and may be used as a potential Rhodophyta model for investigating other types of heavy metal pollution in future.
Collapse
Affiliation(s)
- Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Mary Joy Halog Libatique
- Department of Aquaculture, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan
| | - Siao-Yu Yeh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
4
|
Yañez LM, Alfaro JA, Bovi Mitre G. Absorption of arsenic from soil and water by two chard (Beta vulgaris L.) varieties: A potential risk to human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:23-30. [PMID: 29665483 DOI: 10.1016/j.jenvman.2018.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The accumulation of arsenic (As) in vegetables poses a risk of contamination to humans via the food chain. Two chard (var. cicla and var. d'ampuis) crops were grown for 60 days in greenhouses on Aridisol soil, and irrigated with water from Pastos Chicos, Jujuy (Argentina). The soil and water used in the trial presented 49 and 1.44 mg/L As concentration levels, respectively. Total dry biomass (TDB) and total As were determined in soils, roots and leaves. The latter was quantified by atomic absorption spectrometry with hydride generation, and bioconcentration and translocation factors were determined. TDB in var. cicla showed statistically significant differences when the plant was cultivated in control soil and watered with the toxicant (2.04 g), as compared with the treatment without exposure (2.8 g). TDB in var. d'ampuis presented statistically significant differences with respect to that of the control when the plants were grown in soils with As and watered with the toxicant (3.3 g). This variety increased its biomass in the presence of As. In the two Swiss chard varieties evaluated, the largest As accumulation in root and leaves was found when they were cultivated in contaminated soil and watered with distilled water. The presence of the toxicant in the leaves exceeded the limits established by Código Alimentario Argentino, i.e. 0.30 mg/kg. Total target hazard quotient (THQ) values for As were higher than 1, suggesting that consumers would run significant risks when consuming these chard varieties. Furthermore, it was determined that the carcinogenic risk (CR) posed by this type of exposure to As exceeded the acceptable risk level of 1 × 10-6. Based on this evidence, we may conclude that consuming chard cultivated on the evaluated site brings about considerable risks to local residents' health.
Collapse
Affiliation(s)
- L M Yañez
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi Nº 47, 4600, San Salvador de Jujuy, Argentina; Cátedra Toxicología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi Nº 47, 4600, San Salvador de Jujuy, Argentina.
| | - J A Alfaro
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi Nº 47, 4600, San Salvador de Jujuy, Argentina
| | - G Bovi Mitre
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi Nº 47, 4600, San Salvador de Jujuy, Argentina; Cátedra Toxicología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi Nº 47, 4600, San Salvador de Jujuy, Argentina
| |
Collapse
|
5
|
Jauhari N, Menon S, Sharma N, Bharadvaja N. Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:614-618. [PMID: 28965193 DOI: 10.1007/s00128-017-2183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The plant species Bacopa monnieri has been observed to reduce the heavy metal concentrations in its vicinity. The present study is a comparison of in vitro culture and soil-grown plants of B. monnieri to remove Cr and Cd, from synthetic solution and effluent obtained from industrial area. Results were obtained at every half hour interval upto 180 min. Samples were observed for light absorption using UV-Visible spectrophotometer. Statistically, both systems reclaimed Cr and Cd from polluted water. In vitro cultures showed 67% and 93% removal of Cr and Cd from industrial wastewater whereas soil-grown plants showed 64% and 83% Cr and Cd removal. However, reduction rate was significantly higher for in vitro culture as compared to soil-grown plants. Besides other advantages, in vitro plant cultures proved to be more potent to detoxify pollutants in less time. This approach can be used for the removal of heavy metals at large scale.
Collapse
Affiliation(s)
- Nupur Jauhari
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Sanjay Menon
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Neelam Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|