1
|
Ferrari A, Sturini M, De Felice B, Bonasoro F, Trisoglio CF, Parolini M, Ambrosini R, Canova L, Profumo A, Maraschi F, Polidori C, Costanzo A. From molecules to organisms: A multi-level approach shows negative effects of trace elements from sewage sludge used as soil improver on honeybees. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135497. [PMID: 39154472 DOI: 10.1016/j.jhazmat.2024.135497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The use of sewage sludge as a soil improver has been promoted in agroecosystems. However, sludges can contain toxic trace elements because of suboptimal wastewater treatment. Nonetheless, field studies investigating the negative effects of these practices on pollinators are lacking. We collected honeybees from an area where sewage sludge use is widespread, and one where it is precluded. Trace elements in soils and bees were quantified. Cadmium, chromium, lead, mercury, and nickel were investigated because they were the least correlated elements to each other and are known to be toxic. Their levels were related to oxidative stress and energy biomarkers, midgut epithelial health, body size and wing asymmetry of honeybees. We found increased carbohydrate content in sites with higher cadmium levels, increased histological damage to the midgut epithelium in the sewage sludge area, and the presence of dark spherites in the epithelium of bees collected from the sites with the highest lead levels. Finally, we found that honeybees with the highest lead content were smaller, and that wing fluctuating asymmetry increased in sites with increasing levels of mercury. To the best of our knowledge, this is the first comprehensive study of the concentration and effects on honeybees of trace elements potentially deriving from soil amendment practices.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Michela Sturini
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | | | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Luca Canova
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | | | | | - Carlo Polidori
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
2
|
Rush TA, Wymore AM, Rodríguez M, Jawdy S, Vilgalys RJ, Martin MZ, Andrews HB. Fungal elemental profiling unleashed through rapid laser-induced breakdown spectroscopy (LIBS). mSystems 2024; 9:e0091924. [PMID: 39189771 PMCID: PMC11406887 DOI: 10.1128/msystems.00919-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Elemental profiling of fungal species as a phenotyping tool is an understudied topic and is typically performed to examine plant tissue or non-biological materials. Traditional analytical techniques such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to identify elemental profiles of fungi; however, these techniques can be cumbersome due to the difficulty of preparing samples. Additionally, the instruments used for these techniques can be expensive to procure and operate. Laser-induced breakdown spectroscopy (LIBS) is an alternative elemental analytical technique-one that is sensitive across the periodic table, easy to use on various sample types, and is cost-effective in both procurement and operation. LIBS has not been used on axenic filamentous fungal isolates grown in substrate media. In this work, as a proof of concept, we used LIBS on two genetically distinct fungal species grown on a nutrient-rich and nutrient-poor substrate media to determine whether robust elemental profiles can be detected and whether differences between the fungal isolates can be identified. Our results demonstrate a distinct correlation between fungal species and their elemental profile, regardless of the substrate media, as the same strains shared a similar uptake of carbon, zinc, phosphorus, manganese, and magnesium, which could play a vital role in their survival and propagation. Independently, each fungal species exhibited a unique elemental profile. This work demonstrates a unique and valuable approach to rapidly phenotype fungi through optical spectroscopy, and this approach can be critical in understanding these fungi's behavior and interactions with the environment. IMPORTANCE Historically, ionomics, the elemental profiling of an organism or materials, has been used to understand the elemental composition in waste materials to identify and recycle heavy metals or rare earth elements, identify the soil composition in space exploration on the moon or Mars, or understand human disorders or disease. To our knowledge, ionomic profiling of microbes, particularly fungi, has not been investigated to answer applied and fundamental biological questions. The reason is that current ionomic analytical techniques can be laborious in sample preparation, fail to measure all potential elements accurately, are cost-prohibitive, or provide inconsistent results across replications. In our previous efforts, we explored whether laser-induced breakdown spectroscopy (LIBS) could be used in determining the elemental profiles of poplar tissue, which was successful. In this proof-of-concept endeavor, we undertook a transdisciplinary effort between applied and fundamental mycology and elemental analytical techniques to address the biological question of how LIBS can used for fungi grown axenically in a nutrient-rich and nutrient-poor environment.
Collapse
Affiliation(s)
- Tomás A Rush
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ann M Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miguel Rodríguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Rytas J Vilgalys
- Biology Department, Duke University, Durham, North Carolina, USA
| | - Madhavi Z Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Hunter B Andrews
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
3
|
Cho SE, Kang H, Lee DH, Seo ST, Kim N, Lee S, Kim M, Shin K. The complete mitochondrial genome of a wood-decaying fungus Vanderbylia fraxinea (Polyporaceae, Polyporales). Mitochondrial DNA B Resour 2023; 8:1187-1191. [PMID: 37937099 PMCID: PMC10627039 DOI: 10.1080/23802359.2023.2275832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
Vanderbylia fraxinea (Bull.) D.A. Reid, 1973 is an important wood-inhabiting fungus that plays a significant role in nutrient recycling in most forest ecosystems. In this study, the complete mitochondrial genome of V. fraxinea was characterized through de novo assembly using Illumina sequencing data and genome annotation. The mitochondrial genome is a circular molecule of 115,473 bp with a GC content of 28.66%. It comprises a total of 62 genes. Among these, 36 are protein-coding genes including 21 free-standing open reading frames (ORFs), 24 transfer RNA genes, and two ribosomal RNA genes. Core gene set commonly found in fungal mitochondrial genomes is also present in this genome, such as the apocytochrome b (cob), three subunits of the cytochrome c oxidase (cox1, cox2, and cox3), seven subunits of the NADH dehydrogenase (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), and three subunits of the ATP synthase (atp6, atp8, and atp9), as well as ribosomal RNA subunits (rns and rnl) and a set of transfer RNA genes. Phylogenetic analysis of the protein-coding sequences from the mitochondrial genome revealed a close relationship between V. fraxinea and the Ganoderma species within the Polyporaceae family.
Collapse
Affiliation(s)
- Sung-Eun Cho
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Heonil Kang
- Division of Forest Diseases and Insect Pests, National Institute of Forest Science, Seoul, South Korea
| | - Dong-Hyeon Lee
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Tae Seo
- Division of Forest Diseases and Insect Pests, National Institute of Forest Science, Seoul, South Korea
| | - Namkyu Kim
- Forest Healing Department, Catholic Kwandong University, Gangneung, South Korea
| | - Sanggon Lee
- Department of Forest Environmental Resources, Gyeongsang National University, Jinju, South Korea
| | - Misong Kim
- Department of Forest Environmental Resources, Gyeongsang National University, Jinju, South Korea
| | - Keumchul Shin
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Department of Forest Environmental Resources, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
4
|
Buratti S, Rinaldi F, Calleri E, Bernardi M, Oliva D, Malgaretti M, De Girolamo G, Barucco B, Girometta CE, Savino E. Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. J Fungi (Basel) 2023; 9:jof9050555. [PMID: 37233267 DOI: 10.3390/jof9050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Wood decay fungi (WDF) are a well-known source of enzymes and metabolites which have applications in numerous fields, including myco-remediation. Pharmaceuticals are becoming more problematic as environmental water pollutants due to their widespread use. In this study, Bjerkandera adusta, Ganoderma resinaceum, Perenniporia fraxinea, Perenniporia meridionalis and Trametes gibbosa were chosen from WDF strains maintained in MicUNIPV (the fungal research collection of the University of Pavia) to test their potential to degrade pharmaceuticals. The degradation potential was tested in spiked culture medium on diclofenac, paracetamol and ketoprofen, three of the most common pharmaceuticals, and irbesartan, a particularly difficult molecule to degrade. G. resinaceum and P. fraxinea were found to be the most effective at degradation, achieving 38% and 52% (24 h) and 72% and 49% (7 d) degradations of diclofenac, 25% and 73% (24 h) and 100% (7 d) degradations of paracetamol and 19% and 31% (24 h) and 64% and 67% (7 d) degradations of ketoprofen, respectively. Irbesartan was not affected by fungal activity. The two most active fungi, G. resinaceum and P. fraxinea, were tested in a second experiment in discharge wastewater collected from two different wastewater treatment plants in northern Italy. A high degradation was found in azithromycin, clarithromycin and sulfametoxazole (from 70% up to 100% in 7 days).
Collapse
Affiliation(s)
- Simone Buratti
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Bernardi
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy
| | - Desdemona Oliva
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy
| | | | | | | | | | - Elena Savino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Cartabia M, Girometta CE, Milanese C, Baiguera RM, Buratti S, Branciforti DS, Vadivel D, Girella A, Babbini S, Savino E, Dondi D. Collection and Characterization of Wood Decay Fungal Strains for Developing Pure Mycelium Mats. J Fungi (Basel) 2021; 7:1008. [PMID: 34946991 PMCID: PMC8703653 DOI: 10.3390/jof7121008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Wood decay fungi (WDF) seem to be particularly suitable for developing myco-materials due to their mycelial texture, ease of cultivation, and lack of sporification. This study focused on a collection of WDF strains that were later used to develop mycelium mats of leather-like materials. Twenty-one WDF strains were chosen based on the color, homogeneity, and consistency of the mycelia. The growth rate of each strain was measured. To improve the consistency and thickness of the mats, an exclusive method (newly patented) was developed. The obtained materials and the corresponding pure mycelia grown in liquid culture were analyzed by both thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) to evaluate the principal components and texture. TGA provided a semi-quantitative indication on the mycelia and mat composition, but it was hardly able to discriminate differences in the production process (liquid culture versus patented method). SEM provided keen insight on the mycelial microstructure as well as that of the mat without considering the composition; however, it was able to determine the hyphae and porosity dimensions. Although not exhaustive, TGA and SEM are complementary methods that can be used to characterize fungal strains based on their desirable features for various applications in bio-based materials. Taking all of the results into account, the Fomitopsis iberica strain seems to be the most suitable for the development of leather-like materials.
Collapse
Affiliation(s)
- Marco Cartabia
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (R.M.B.); (S.B.); (E.S.)
- MOGU S.r.l., Via S. Francesco 62, 21020 Inarzo, Italy;
| | - Carolina Elena Girometta
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (R.M.B.); (S.B.); (E.S.)
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (C.M.); (D.S.B.); (D.V.); (A.G.); (D.D.)
| | - Rebecca Michela Baiguera
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (R.M.B.); (S.B.); (E.S.)
| | - Simone Buratti
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (R.M.B.); (S.B.); (E.S.)
| | - Diego Savio Branciforti
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (C.M.); (D.S.B.); (D.V.); (A.G.); (D.D.)
| | - Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (C.M.); (D.S.B.); (D.V.); (A.G.); (D.D.)
| | - Alessandro Girella
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (C.M.); (D.S.B.); (D.V.); (A.G.); (D.D.)
| | | | - Elena Savino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (R.M.B.); (S.B.); (E.S.)
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (C.M.); (D.S.B.); (D.V.); (A.G.); (D.D.)
| |
Collapse
|
6
|
Fu Z, Liu G, Wang L. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29218-29227. [PMID: 32436089 DOI: 10.1007/s11356-020-09242-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Wild edible mushrooms are rich in nutritions and popular among people, but wild edible mushrooms easily accumulate potentially harmful trace elements, and excessive intake will harm health. The aim of this study was to investigate the potential health hazards of long-term intake of wild edible mushrooms in Yunnan Province, China. The concentrations of trace element (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in 19 species of wild edible mushrooms in Yunnan Province were determined by inductively coupled plasma mass spectrometry (ICP-MS). Further processing of the data, the potential health risk assessments of consumers were evaluated by the target hazard quotient (THQ), hazard index (HI), and incremental lifetime cancer risk (ILCR), respectively. Results showed that concentrations of trace element in wild edible mushrooms decreased in the order of Zn > Cu > As > Ni > Cr > Cd > Pb > Hg. Compared with the maximum standard by the WHO/China, the averages of As, Cd, Cr, Hg, and Zn were significantly greater than the standard. Among the tested wild edible mushrooms, HI values of Leccinum crocipodium, Thelephora ganbajun, Lactarius luteolus, Tricholoma matsutake, and Polyporus ellisii were more than 1. Thus, Leccinum crocipodium, Thelephora ganbajun, Lactarius luteolus, Tricholoma matsutake, and Polyporus ellisii are the main sources of risk. The value of THQ in ascending order was as follows: Pb (0.11) < Cd (0.75) < As (4.27) < Hg (6.87). Thus, Hg are the primary sources of health risk in the wild edible mushrooms in Yunnan Province. ILCR(As) values of Thelephora ganbajun, Tricholoma matsutake, Laccaria amethystea, and Polyporus ellisii were more than 10-4, these four samples are the primary sources of health risk. The mean values of ILCR for As in wild mushroom were 1.01 × 10-4. The results suggest that there was potential health risk to the consumer associated with the long-term consumption of wild edible mushrooms collected from Yunnan Province. We propose that the concentrations of trace element should be periodically monitored in wild edible mushrooms.
Collapse
Affiliation(s)
- Zhiqiu Fu
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
- School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China
| | - Gang Liu
- School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China.
| | - Luxiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
7
|
Abstract
One of the main aims of the University of Pavia mycology laboratory was to collect wood decay fungal (WDF) strains in order to deepen taxonomic studies, species distribution, officinal properties or to investigate potential applications such as biocomposite material production based on fungi. The Italian Alps, Apennines and wood plains were investigated to collect Basidiomycota basidiomata from living or dead trees. The purpose of this study was to investigate the wood decay strains of the Mediterranean area, selecting sampling sites in North and Central Italy, including forests near the Ligurian and Adriatic seas, or near the Lombardy lakes. The isolation of mycelia in pure culture was performed according to the current methodology and the identity of the strains was confirmed by molecular analyses. The strains are maintained in the Research Culture Collection MicUNIPV of Pavia University (Italy). Among the 500 WDF strains in the collection, the most interesting isolates from the Mediterranean area are: Dichomitus squalens (basidioma collected from Pinus pinea), Hericium erinaceus (medicinal mushroom), Inocutis tamaricis (white-rot agent on Tamarix trees), Perenniporia meridionalis (wood degrader through Mn peroxidase) and P. ochroleuca. In addition, strains of species related to the Mediterranean climate (e.g., Fomitiporia mediterranea and Cellulariella warnieri) were obtained from sites with a continental-temperate climate.
Collapse
|
8
|
Corana F, Cesaroni V, Mannucci B, Baiguera RM, Picco AM, Savino E, Ratto D, Perini C, Kawagishi H, Girometta CE, Rossi P. Array of Metabolites in Italian Hericium erinaceus Mycelium, Primordium, and Sporophore. Molecules 2019; 24:E3511. [PMID: 31569709 PMCID: PMC6803874 DOI: 10.3390/molecules24193511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Hericium erinaceus is a medicinal mushroom that contains many molecules promising a plethora of therapeutic properties. In this study, the strain H.e.2 (MicUNIPV, University of Pavia, Italy) was isolated from a sporophore collected in Tuscany (Italy). Mycelium, primordium, and wild type and cultivated sporophores were analyzed by HPLC-UV-ESI/MS. Erinacine A in the mycelium and hericenones C and D in the sporophores were quantified by comparison with their standard molecules. For the first time, H. erinaceus primordium was also investigated for the presence of these molecules. Comparing with the literature data, hericenes, molecules structurally similar to hericenones, were present in all our samples. The highest contents of hericenones C and D were detected in cultivated sporophores, compared to the wild type. The comparison of these data with those of another Italian H. erinaceus strain (H.e.1 MicUNIPV) was discussed. The results led us to select H. erinaceus strains more suitable for mycelium production or sporophore cultivation to obtain extracts with a higher content of bioactive compounds. This work provides a further step towards standardizing the procedures in the development of dietary supplements made from mushrooms.
Collapse
Affiliation(s)
- Federica Corana
- Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy.
| | - Valentina Cesaroni
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Barbara Mannucci
- Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy.
| | | | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Elena Savino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Ratto
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Claudia Perini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Li Q, Huang W, Xiong C, Zhao J. Transcriptome analysis reveals the role of nitric oxide in Pleurotus eryngii responses to Cd 2+ stress. CHEMOSPHERE 2018; 201:294-302. [PMID: 29525657 DOI: 10.1016/j.chemosphere.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/12/2018] [Accepted: 03/03/2018] [Indexed: 05/19/2023]
Abstract
Pleurotus eryngii is widely cultivated in China. However, our understanding of its transcriptional response to heavy metal stress and the underlying mechanism of nitric oxide (NO) in enhancing its tolerance to heavy metals is limited. In the present study, RNA-seq was used to generate large transcript sequences from P. eryngii exposed to cadmium chloride (CdCl2) and exogenous NO. A total of 45,833 unigenes were assembled from the P. eryngii transcriptome, of which 32,333 (70.54%) unigenes matched known proteins in the nr database. Transcriptional analysis revealed that putative genes encoding heat shock proteins (HSPs) and genes participating in glycerolipid metabolism and steroid biosynthesis were significantly up-regulated in P. eryngii exposed to 50 μM Cd (P < 0.05). P. eryngii mycelia exposed to extremely high levels of heavy metals showed an increase in biomass when exogenous NO was added to the culture. The collaboration of putative oxidoreductase, dehydrogenase, reductase, transferase genes and transcription factors such as "GTPase activator activity", "transcription factor complex", "ATP binding", "GTP binding", and "enzyme activator activity", which were significantly up-regulated in samples induced by exogenous NO, contributed to the enhancement of P. eryngii tolerance to extremely high levels of heavy metals. The study provides a new insight into the transcriptional response of P. eryngii to extremely high levels of heavy metals and the mechanism of NO in enhancing heavy metal tolerance.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|