1
|
Shi YXX, Cui JQ, Zhang F, Li KW, Jiang J, Xu RK. Effects of soil pH and organic carbon content on in vitro Cr bioaccessibility in Ultisol, Alfisol, and Inceptisol. CHEMOSPHERE 2023; 336:139274. [PMID: 37343637 DOI: 10.1016/j.chemosphere.2023.139274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a toxic heavy metal and its mobility and bioaccessibility in soils are influenced by soil properties. In this study, the soil pH and organic carbon contents of Ultisol, Alfisol, and Inceptisol were adjusted before they were polluted with 230 mg kg-1 Cr(VI). Alkaline digestion, sequential extraction, and an in vitro experiment were conducted to study the valence state, species, and bioaccessibility of Cr in the soils. The results showed that a high soil pH was not favorable for reduction of Cr(VI); therefore the Cr(VI) and exchangeable Cr contents were positively related to soil pH. Soil organic carbon promoted the reduction of Cr(VI). Almost all Cr(VI) was reduced to Cr(III) when the soil organic carbon content reached 10 g kg-1. Chromium bioaccessibility in simulated gastric and intestinal phase solutions was influenced by Cr(VI) and Cr(III) adsorption/desorption, dissolution/precipitation, and redox reactions. Chromium bioaccessibility differences between the gastric and intestinal phases were associated with the Cr(VI)/Cr(III) ratio. Acidic conditions and a high organic carbon content promoted the conversion of Cr(VI) to Cr(III). When soil pH was increased from 4.01 to 5.85, Cr(VI) in Alfisol without the addition of humic acid increased from 96.38 to 174.78 mg kg-1, the exchangeable Cr proportion increased from 9.7% to 22.6%, and Cr bioaccessibility increased from 41.29% to 49.14% in the gastric phase and from 41.32% to 48.24% in the intestinal phase. When the organic content increased from 3.95 to 9.28 g kg-1 in Alfisol, Cr(VI) content decreased from 167.66 to 20.52 mg kg-1, which led to a decrease in Cr bioaccessibility from 49.15% to 13.8% in the gastric phase and from 45.85% to 7.67% in the intestinal phase. Therefore, acidic conditions and increasing soil organic carbon levels can reduce the health risk posed by Cr in soils.
Collapse
Affiliation(s)
- Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang Z, Guo G, Zhao H, Wu D. Partitioning, leachability, and speciation of chromium in the size-fractions of soil contaminated by chromate production. CHEMOSPHERE 2021; 263:128308. [PMID: 33297245 DOI: 10.1016/j.chemosphere.2020.128308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 05/16/2023]
Abstract
Soil particle size significantly affects the distribution and migration of chromium (Cr) in soil. Limited studies have investigated the impact of soil particle size on Cr partitioning at chromate contaminated sites. In this study, the physicochemical properties of coarse sand, medium sand, fine sand, and silt-clay were analyzed. And the particle size effects on partitioning, leachability, and bioaccessibility of total Cr and Cr(VI) were determined. The results showed the distribution factor (DF) of Cr(VI) in the coarse sand, medium sand, fine sand, and silt-clay fractions were 0.70, 0.79, 1.35, and 1.60, respectively. The total Cr DF values also had the similar result. The leached concentrations of total Cr and Cr(VI) in silt-clay (562.89 mg/L and 551.71 mg/L) was higher than in coarse sand (238.55 mg/L and 228.68 mg/L) fraction. The bioaccessibility of total Cr and Cr(VI) in silt-clay (77.72% and 88.58%) was higher than in fine sand (60.72% and 79.55%) fraction. The total Cr proportion of the exchangeable fraction (45.92%-73.67%) was relatively high in the four soil particle size fractions and gradually increased as soil particle size decreased. These implied that finer soil particles are more capable of enriching, mobilizing, and bioaccessibility of Cr and Cr(VI) than the coarse particles, which was related to the higher organic matter, cation exchange capacity, specific surface area, and clay components in smaller particles. The results suggested that higher environmental risk occurred in the finer fraction than in the coarser fraction for the chromate production contaminated soil.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing, 100035, China.
| | - Guanlin Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huafu Zhao
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Dan Wu
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|