1
|
Fatima A, Farid M, Asam ZUZ, Zubair M, Farid S, Abbas M, Rizwan M, Ali S. Efficacy of marigold (Tagetes erecta L.) for the treatment of tannery and surgical industry wastewater under citric acid amendment: a lab scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43403-43418. [PMID: 36658313 DOI: 10.1007/s11356-023-25299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Contamination of land and aquatic ecosystems with heavy metals (HMs) is a global issue having the persistent potential to damage the quality of food and water. In the present study, Tagetes erecta L. plants were used to assess their potential to uptake HMs from wastewater. Plants were grown in soil for 20 days and then transplanted in hydroponic system containing Hoagland nutrient solution. After more than 15 days of growth, plants were then subjected to wastewater from tannery and surgical industries in different concentrations ranging from 25 to 100% in combination of citric acid (5 and 10 mM). After 6 weeks of treatment, plants were collected and segmented into roots, stem, and leaves for characterizing the morphological properties including plant height, roots length, fresh and dry mass of roots, stem, and leaves. For evaluation of the effect of wastewater on the plants, photosynthetic pigments; soluble proteins; reactive oxygen species (ROS); antioxidant enzymes SOD, POD, CAT, and APX; and metal accumulation were analyzed. Application of industrial wastewater revealed a significant effect on plant morphology under wastewater treatments. Overall growth and physiological attributes of plant decreased, and metal accumulation enhanced with increasing concentration of wastewater. Similarly, the production of ROS and antioxidant enzymes were also increased. Chlorophyll, protein content, and enzyme production enhanced with CA (5 and 10 mM) mediation; however, ROS production and EL were reduced. Metals analysis showed that the maximum accumulation of Pb was in roots, while Cr and Ni in the stem which further increased under CA mediation. Overall, the metal accumulation ability was in the order of Pb > Ni > Cr under CA.
Collapse
Affiliation(s)
- Arooj Fatima
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Zaki Ul Zaman Asam
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
- Department of Biology, Ecology and Evolution, University of Liege, Liege, Belgium
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
2
|
Kenny CR, Ring G, Sheehan A, Mc Auliffe MAP, Lucey B, Furey A. Novel metallomic profiling and non-carcinogenic risk assessment of botanical ingredients for use in herbal, phytopharmaceutical and dietary products using HR-ICP-SFMS. Sci Rep 2022; 12:17582. [PMID: 36266322 PMCID: PMC9584900 DOI: 10.1038/s41598-022-16873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 01/13/2023] Open
Abstract
Knowledge of element concentrations in botanical extracts is relevant to assure consumer protection given the increased interest in plant-based ingredients. This study demonstrates successful multi-element investigations in order to address the lack of comprehensive profiling data for botanical extracts, while reporting for the first time the metallomic profile(s) of arnica, bush vetch, sweet cicely, yellow rattle, bogbean, rock-tea and tufted catchfly. Key element compositions were quantified using a validated HR-ICP-SFMS method (µg kg-1) and were found highly variable between the different plants: Lithium (18-3964); Beryllium (3-121); Molybdenum (75-4505); Cadmium (5-325); Tin (6-165); Barium (747-4646); Platinum (2-33); Mercury (5-30); Thallium (3-91); Lead (12-4248); Bismuth (2-30); Titanium (131-5827); Vanadium (15-1758); Chromium (100-4534); Cobalt (21-652); Nickel (230-6060) and Copper (1910-6340). Compendial permissible limits were not exceeded. Overall, no evidence of a health risk to consumers could be determined from consumption of the investigated plants at reasonable intake rates. Mathematical risk modelling (EDI, CDI, HQ, HI) estimated levels above safe oral thresholds only for Cd (16%) and Pb (8%) from higher intakes of the respective plant-derived material. Following high consumption of certain plants, 42% of the samples were categorised as potentially unsafe due to cumulative exposure to Cu, Cd, Hg and Pb. PCA suggested a potential influence of post-harvest processing on Cr, Ti and V levels in commercially-acquired plant material compared to wild-collected and farm-grown plants. Moreover, a strong correlation was observed between Pb-Bi, Be-V, Bi-Sn, and Tl-Mo occurrence. This study may support future research by providing both robust methodology and accompanying reference profile(s) suitable for the quality evaluation of essential elements and/or metal contaminants in botanical ingredients.
Collapse
Affiliation(s)
- Ciara-Ruth Kenny
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Gavin Ring
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Aisling Sheehan
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Michael A P Mc Auliffe
- Centre for Advanced Photonics and Process Analysis (CAPPA), Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Brigid Lucey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Ambrose Furey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
| |
Collapse
|
3
|
Akay A. Lead tolerance and accumulation characteristics of Cubana Kordes rose in lead-contaminated soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:307. [PMID: 35353252 DOI: 10.1007/s10661-022-09944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to determine lead tolerance and accumulation characteristics of Cubana Kordes rose, which is used in landscaping studies in areas with heavy traffic. In the study, 0%, 3%, and 6% leonardite was added to the sand growing medium, and Pb was applied at different doses (0, 200, 400, 800, and 1600 mg Pb kg-1). At the end of the experiment, the effect of Pb application on plant physiological properties was not statistically significant. The Pb concentration of flower and stem was between 4.50 and 8.92 mg kg-1 and 8.47 and 543.25 mg kg-1, respectively. The Pb concentration in the stem increased with an increase in the dose of Pb. The Pb concentration in the root was between 4.00 and 50.35 mg kg-1 and increased with an increase in the dose of Pb (p < 0.05). The available Pb concentration in the soil varied between 0.05 and 448.79 mg kg-1. The transfer factor value varied between 1.84 and 18.73 and the bioaccumulation factor value ranged between 0.00 and 10.46. The amount of Pb removed from the soil by the stem was between 124.7 and 8346.6 µg kg-1. From the results, we determined that Pb accumulated at a higher rate in the stem than in the root and the flower of Cubana Kordes roses. We found that these roses could tolerate the accumulation of Pb, and hence, they have a great potential to be used in the remediation of soil contaminated by Pb.
Collapse
Affiliation(s)
- Ayşen Akay
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Turkey.
| |
Collapse
|
4
|
Aghelan N, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H. Evaluation of some chelating agents on phytoremediation efficiency of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:503-514. [PMID: 34150254 PMCID: PMC8172735 DOI: 10.1007/s40201-021-00623-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
PURPOSE This study was designed to evaluate the possible effects of some chelating agents on phytoremediation efficiency and plant growth parameters of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead. METHOD The plant species were grown in pots and treated with lead nitrate and in combination with 2.5, 2.0 and 2.5 mmol/kg of EDTA, SA and CA, respectively. RESULTS The results showed that the highest accumulations of Pb (mg/kg) with 0.74 and 0.13 were found in the roots and stems of A. caudatus exposed to 400 mg/kg Pb containing EDTA and SA, respectively. Moreover, the highest accumulation of Pb in the roots and stems of T. patula with 0.87 and 1.5 mg/kg were observed in 400 mg/kg Pb- contaminated soil containing SA. CONCLUSIONS Although the results obtained showed that T. patula would have a better phytoextraction potential than A. caudatus, it should be noted that due to the Pb behavior in the soil and/or leaching of Pb from the soil columns during the irrigation period the low amounts of Pb absorption by the root and aerial parts of the plants compared to the added doses of Pb(NO3)2 solution to the soil samples, imply the studied plants haven't the adequate potential for phytoextraction of Pb from contaminated soils.
Collapse
Affiliation(s)
- Nastaran Aghelan
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hajar Merrikhpour
- Department of Agriculture, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
5
|
Lu W, Li Z, Shao Z, Zheng C, Zou H, Zhang J. Lead Tolerance and Enrichment Characteristics of Several Ornamentals Under Hydroponic Culture. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:166-172. [PMID: 32564099 DOI: 10.1007/s00128-020-02905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The growth response, tolerance, and enrichment characteristics of six ornamental species, Chlorophytum comosum, Calendula officinalis, Iris lacteal, Belamcanda chinensis, Saponaria officinalis, and Polygonum lapathifolium were studied under hydroponic culture with lead (Pb) concentrations ranging from 0 to 1000 mg/L. The results showed that the growth of the tested ornamental species under Pb stress was inhibited. Belamcanda chinensis presented the largest tolerance index (0.75), and Calendula officinalis had the highest toxicity threshold (500 mg/L) under Pb stress. The highest Pb contents in the shoots were detected in Iris lacteal and Belamcanda chinensis. The enrichment coefficients in the shoots of Iris lacteal and Belamcanda chinensis were significantly higher than those in the other ornamental species. In conclusion, Iris lacteal and Belamcanda chinensis are the most tolerant and have the greatest Pb enrichment and translocation abilities under Pb stress, and thus, they have a strong potential to restore Pb-contaminated water bodies and soils.
Collapse
Affiliation(s)
- Wenlong Lu
- College of Resource and Environment Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, People's Republic of China
| | - Zhuoran Li
- College of Resource and Environment Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, People's Republic of China
| | - Zeqiang Shao
- College of Resource and Environment Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, People's Republic of China.
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Congcong Zheng
- Plant Sciences, Institute of Bio and Geosciences-2, Forschungszentrum Juelich GmbH, 52428, Juelich, Germany
| | - Huijie Zou
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinjing Zhang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
6
|
Li Q, Wang H, Wang H, Wang Z, Li Y, Ran J, Zhang C. Re-investigation of cadmium accumulation in Mirabilis jalapa L.: evidences from field and laboratory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12065-12079. [PMID: 31983000 DOI: 10.1007/s11356-020-07785-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mirabilis jalapa L. was identified as a cadmium (Cd) hyperaccumulator, but data were mainly from laboratory conditions. The main aim of the present study was to confirm whether M. jalapa is a Cd hyperaccumulator by field survey and laboratory experiment. The field survey was conducted at 3 sites and 66 samples were collected, and the results showed that although M. jalapa did not exhibit any visible damage when growing on soil containing 139 mg Cd kg-1, a low concentration of Cd (11.85 ± 3.45 mg kg-1) in its leaves was observed. Although the translocation factor (TF) was up to 3.24 ± 0.42, the bioconcentration factor (BCF) was only 0.13 ± 0.07. The Cd accumulation in leaves of Lanping (LP, contaminated site) and Kunming (KM, clean site) populations reached 93.88 and 81.76 mg kg-1 when artificially spiked soil Cd was 175 mg kg-1, respectively. The BCFs of LP and KM populations were 0.55 and 0.48, and the TFs of the two populations were 3.98 and 4.15, respectively. Under hydroponic condition, the Cd concentration in young leaves of LP and KM populations was 78.5 ± 0.8 and 46.3 ± 1.2 mg kg-1 at 5 mg L-1 Cd treatment, respectively. Furthermore, a significantly positive correlation between tissue Cd concentration and total Cd, CaCl2-extractable Cd, and TCLP-Cd (toxicity characteristic leaching procedure) in soil was established. Therefore, M. jalapa had constitutional characteristics for Cd tolerance and accumulation, but it was not a Cd hyperaccumulator.
Collapse
Affiliation(s)
- Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Yang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Jiakang Ran
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Chunyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| |
Collapse
|
7
|
Zhiqiang C, Zhibiao C. Clipping strategy to assist phytoremediation by hyperaccumulator Dicranopteris dichotoma at rare earth mines. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1038-1047. [PMID: 32062979 DOI: 10.1080/15226514.2020.1725870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Little is known about the clipping strategy to assist phytoremediation by Dicranopteris dichotoma at rare earth mines. We evaluated the phytoremediation ability of D. dichotoma, designed an appropriate clipping strategy, and obtained the phytoextraction time for rare earth elements (REE) by field investigation, laboratory measurement, and statistical analysis etc. at four rare earth mines in south China. D. dichotoma growth and soil nutrients tended to increase across the ecological restoration chronosequence, the total REE content in aboveground biomass was ≥1,000 mg kg-1, the bioabsorption coefficient and translocation factor were ≥1, and the phytoextraction of light REE was greater than heavy REE. Overall, the REE accumulation did not vary significantly among seasons, the total REE accumulation in the underground biomass accounted for 26.55-64% and the vegetation covers were about 90% two years after clipping. It would take 57.88-168.57 years to reduce soil total REE content, and the soil nutrients and REE accumulations of D. dichotoma at Longjing were the highest. D. dichotoma has potential for REE phytoextraction and phytostabilization simultaneously. D. dichotoma should be clipped in winter once every two years with underground biomass retained. The REE phytoextraction time is long with soil nutrients being important influencing factors.
Collapse
Affiliation(s)
- Chen Zhiqiang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Chen Zhibiao
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|