1
|
von Hellfeld R, Gade C, Koppel DJ, Walters WJ, Kho F, Hastings A. An approach to assess potential environmental mercury release, food web bioaccumulation, and human dietary methylmercury uptake from decommissioning offshore oil and gas infrastructure. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131298. [PMID: 36996541 DOI: 10.1016/j.jhazmat.2023.131298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Subsea pipelines carrying well fluids from hydrocarbon fields accumulate mercury. If the pipelines (after cleaning and flushing) are abandoned in situ, their degradation may release residual mercury into the environment. To justify pipeline abandonment, decommissioning plans include environmental risk assessments to determine the potential risk of environmental mercury. These risks are informed by environmental quality guideline values (EQGVs) governing concentrations in sediment or water above which mercury toxicity may occur. However, these guidelines may not consider e.g., the bioaccumulation potential of methylated mercury. Therefore, EQGVs may not protect humans from exposure if applied as the sole basis for risk assessments. This paper outlines a process to assess the EQGVs' protectiveness from mercury bioaccumulation, providing preliminary insights to questions including how to (1) determine pipeline threshold concentrations, (2) model marine mercury bioaccumulation, and (3) determine exceedance of the methylmercury tolerable weekly intake (TWI) for humans. The approach is demonstrated with a generic example using simplifications to describe mercury behaviour and a model food web. In this example, release scenarios equivalent to the EQGVs resulted in increased marine organism mercury tissue concentrations by 0-33 %, with human dietary methylmercury intake increasing 0-21 %. This suggests that existing guidelines may not be protective of biomagnification in all circumstances. The outlined approach could inform environmental risk assessments for asset-specific release scenarios but must be parameterised to reflect local environmental conditions when tailored to local factors.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK
| | - Darren J Koppel
- Curtin Oil and Gas Innovation Centre, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia; Australian Institute of Marine Science, Perth, Australia
| | - William J Walters
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, PA, USA
| | - Fenny Kho
- Curtin Oil and Gas Innovation Centre, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia; Curtin Corrosion Centre, Curtin University, Perth, WA, Australia
| | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK
| |
Collapse
|
2
|
Chen B, Dong S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15929. [PMID: 36498005 PMCID: PMC9739465 DOI: 10.3390/ijerph192315929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a principal source of long-chain omega-3 fatty acids (3FAs), which provide vital health benefits, fish consumption also comes with the additional benefit of being rich in diverse nutrients (e.g., vitamins and selenium, high in proteins and low in saturated fats, etc.). The consumption of fish and other seafood products has been significantly promoted universally, given that fish is an important part of a healthy diet. However, many documents indicate that fish may also be a potential source of exposure to chemical pollutants, especially mercury (Hg) (one of the top ten chemicals or groups of chemicals of concern worldwide), and this is a grave concern for many consumers, especially pregnant women, as this could affect their fetuses. In this review, the definition of Hg and its forms and mode of entrance into fish are introduced in detail and, moreover, the bio-accumulation of Hg in fish and its toxicity and action mechanisms on fish and humans, especially considering the health of pregnant women and their fetuses after the daily intake of fish, are also reviewed. Finally, some feasible and constructive suggestions and guidelines are recommended for the specific group of pregnant women for the consumption of balanced and appropriate fish diets in a rational manner.
Collapse
Affiliation(s)
- Bojian Chen
- Food Science and Engineering, Haide College, Ocean University of China, Qingdao 266100, China
| | - Shiyuan Dong
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Sousa AH, Pereira JPG, Malaquias AC, Sagica FDES, de Oliveira EHC. Intracellular accumulation and DNA damage caused by methylmercury in glial cells. J Biochem Mol Toxicol 2022; 36:e23170. [PMID: 35822649 DOI: 10.1002/jbt.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.
Collapse
Affiliation(s)
- Aline H Sousa
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Bacteriologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - João P G Pereira
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Allan C Malaquias
- Faculdade de Medicina, Universidade Federal do Pará, Campus de Altamira, Pará, Brazil
| | | | - Edivaldo H C de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
4
|
Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araújo A, Santos-Sacramento L, Yuki Takeda P, Macchi BDM, do Nascimento JLM, Maia CSF, Lima RR, Arrifano GP. Mercury: What can we learn from the Amazon? ENVIRONMENT INTERNATIONAL 2021; 146:106223. [PMID: 33120229 DOI: 10.1016/j.envint.2020.106223] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Mercury is among the ten most dangerous chemicals for public health, and is a priority concern for the 128 signatory countries of the Minamata Convention. Mercury emissions to the atmosphere increased 20% between 2010 and 2015, with South America, Sub-Saharan Africa and Southeast Asia as the main contributors. Approximately 80% of the total mercury emissions in South America is from the Amazon, where the presence of the metal is ubiquitous and highly dynamic. The presence of this metal is likely increasing, with global consequences, due to events of the last two years including extensive biomass burning and deforestation, as well as mining activities and the construction of large-scale projects, such as dams. Here we present a concise profile of this mobilization, highlighting the human exposure to this metal in areas without mining history. Mercury reaches the food chain in its most toxic form, methylmercury, intoxicating human populations through the intake of contaminated fish. Amazonian populations present levels over 6 ppm of hair mercury and, according to the 175:250:5:1 ratio for methylmercury intake : mercury hair : mercury brain : mercury blood, consume 2-6 times the internationally recognized reference doses. This exposure is alarmingly higher than that of other populations worldwide. A possible biphasic behavior of the mercury-related phenomena, with consequences that may not be observed in populations with lower levels, is hypothesized, supporting the need of improving our knowledge of this type of chronic exposure. It is urgent that we address this serious public health problem in the Amazon, especially considering that human exposure may be increasing in the near future. All actions in this region carry the potential to have global repercussions.
Collapse
Affiliation(s)
- Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Priscila Yuki Takeda
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Barbarella de Matos Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - José Luiz Martins do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), 68903-419 Macapá, AP, Brazil.
| | - Cristiane S F Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Rafael R Lima
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| |
Collapse
|