1
|
Queiroz LG, do Prado CC, de Oliveira PFM, Valezi DF, Cecconi Portes M, Rocha de Moraes B, Ando RA, Vicente E, de Paiva TC, Pompêo M, Rani-Borges B. The Toxicity of Poly(acrylonitrile-styrene-butadiene) Microplastics toward Hyalella azteca Is Associated with Biofragmentation and Oxidative Stress. Chem Res Toxicol 2025; 38:91-101. [PMID: 39829240 PMCID: PMC11752492 DOI: 10.1021/acs.chemrestox.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod Hyalella azteca and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure. At the end of the exposure period, we evaluated the ability of H. azteca to fragment the ABS particles, as well as the changes in its oxidative stress biomarkers (SOD, CAT, MDA, and GST) as the result of ABS exposure. H. azteca promoted a significant fragmentation of ABS particles. The ratio of this biofragmentation was more pronounced in pristine particles. Despite the absence of significant changes in the mortality of exposed organisms, alterations in the oxidative stress biomarkers were observed. The results demonstrate the ability of H. azteca to fragment pristine and aged ABS microplastics and, the consequent susceptibility of these organisms to the effects of microplastic exposure.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Caio César
Achiles do Prado
- Engineering
School of Lorena, University of São
Paulo, Estrada Municipal
do Campinho 100, 12602-810 Lorena, SP, Brazil
| | | | - Daniel Farinha Valezi
- Physics
Department, State University of Londrina, Rodovia Celso Garcia Cid PR 445
Km 380, 86057-970 Londrina, PR, Brazil
| | - Marcelo Cecconi Portes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Beatriz Rocha de Moraes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Rômulo Augusto Ando
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Eduardo Vicente
- Department
of Microbiology and Ecology, University
of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | | | - Marcelo Pompêo
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Bárbara Rani-Borges
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Saygin H, Baysal A, Zora ST, Tilkili B. A characterization and an exposure risk assessment of microplastics in settled house floor dust in Istanbul, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121030-121049. [PMID: 37947931 DOI: 10.1007/s11356-023-30543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The presence of microplastics in the indoor environment presents growing environmental and human health risks because of their physicochemical and toxic characteristics. Therefore, we aimed to isolate, identify, and characterize plastic debris in settled house floor dusts. This study is a rare study which assess the risks of plastic debris in settled house dust through multiple approaches including the estimated daily intake, pollution loading index, and polymer hazard index. The results indicated that polyethylene and polypropylene were the predominate polymer type of plastic debris in settled house dust with various shapes and colors. The risk assessment results also indicated the serious impact of microplastics in terms of extremely dangerous contamination as well as the fact that they present a polymer hazard. Results indicated that humans have a higher risk of exposure to microplastics via ingestion rather than inhalation. In addition, infants had a higher risk of potential intake compared to other age groups.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye.
| | - Asli Baysal
- Faculty of Science and Letters, Chemistry Dept., Istanbul Technical University, Maslak, 34467, Istanbul, Türkiye
| | - Sevilay Tarakci Zora
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| |
Collapse
|
3
|
Sari Erkan H, Takatas B, Ozturk A, Gündogdu S, Aydın F, Koker L, Ozdemir OK, Albay M, Onkal Engin G. Spatio-temporal distribution of microplastic pollution in surface sediments along the coastal areas of Istanbul, Turkey. MARINE POLLUTION BULLETIN 2023; 195:115461. [PMID: 37659384 DOI: 10.1016/j.marpolbul.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Microplastics (MPs) have become prevalent in various environmental compartments, including air, water, and soil, attracting attention as significant pollutant parameters. This study investigated the prevalence of MP pollution in surface sediments along Istanbul's Marmara Sea, encompassing the megacity and the Bosphorus. A comprehensive sampling approach was employed, covering 43 stations across four seasons and depths ranging from 5 to 70 m. The objective was to assess the impact of terrestrial, social, and industrial activities on MPs. The average concentrations varied per season, with fall, winter, spring, and summer values recorded as 2000 ± 4100, 1600 ± 3900, 4300 ± 12,000, and 9500 ± 20,300 particles/kg-DW. The study identified river stations in the Golden Horn and sea discharge locations as hotspots for high concentrations. Notably, the dominant shape shifted from fibers in fall, winter, and spring to fragments during summer, coinciding with mucilage occurrences. The study identified 11 different polymers, with polyethylene (44 %) and polypropylene (31 %) being the most common.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye.
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| | - Alihan Ozturk
- Yildiz Technical University, Control and Automation Engineering Department, 34349 Istanbul, Turkiye
| | - Sedat Gündogdu
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkiye
| | - Fatih Aydın
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Latife Koker
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Oguz Kaan Ozdemir
- Yıldız Technical University, Department of Metallurgical and Materials Engineering, 34220 İstanbul, Turkiye
| | - Meric Albay
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| |
Collapse
|
4
|
İŞLEK Ş, BOSTAN Z, GÜNEY E, SÖNMEZ VZ. Kıyı Lagün Sedimentlerinde Mikroplastiklerin Oluşumları ve Mekansal Dağılımları: Küçükçekmece Lagünü Örneği. COMMAGENE JOURNAL OF BIOLOGY 2023. [DOI: 10.31594/commagene.1223041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nehir, haliç ve lagünler, karasal ve deniz ekosistemleri arasında bağlantıyı sağlarken, tıpkı diğer kirleticilerde olduğu gibi sediment yapılarında da mikroplastik kirliliği hakkında kapsamlı bir profil ortaya koymaktadır. Bu çalışmada, Küçükçekmece Lagünü’nün üç farklı sucul alanından (deniz, kanal ve göl) alınan sediment örneklerinde mikroplastik bolluğu ve karakterizasyonunun belirlenmesi amaçlanmıştır. Bu kapsamda, lagünde belirlenen 5 istasyondan 12 aylık (Mart 2019 – Şubat 2020) sediment örnekleri alınmıştır. Mikroplastik ön işlemlerine tabi tutulan sediment örneklerinde, stereomikroskop ile mikroplastik bolluğu sayımı ve kategorizasyonu (boyut, tip ve renk) yapılmıştır. Ortalama mikroplastik bolluğu 2922,32±517,35 MP/kg olarak belirlenmiş olup, tespit edilen ortalama mikroplastik bolluğu değeri, ülkemizde daha önce yapılmış benzer çalışmalara kıyasla 2,4 kat daha yüksek bulunmuştur. Liflerin (%59) baskın mikroplastik tipi olduğu, baskın mikroplastik renginin siyah (%42) olduğu ve MP boyutlarının %50’sinin 1-100 μm arasında olduğu belirlenmiştir. Mevsimsel mikroplastik dağılımı irdelendiğinde ise, en yüksek bolluk değerlerinin yağışlı sezon olan kış aylarında olduğu tespit edilmiştir. Çalışma alanında en yüksek ortalama mikroplastik bolluğuna sahip L1 istasyonu, Küçükçekmece Lagünü Bağlantı Alanı temsil etmekte olup, lagündeki tüm antropojenik baskıların hissedildiği istasyon olarak ortaya çıkmaktadır. Bu çalışma, dünyanın diğer bölgelerindeki benzer sediment alanları için mikroplastik bolluğu ve dağılımı hakkında temsili veriler sağlamayı amaçlamaktadır.
Collapse
Affiliation(s)
- Şevval İŞLEK
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ, ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ, ÇEVRE MÜHENDİSLİĞİ PR
| | - Zeynep BOSTAN
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ, ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ, ÇEVRE MÜHENDİSLİĞİ PR
| | - Ecem GÜNEY
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ, ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ, ÇEVRE MÜHENDİSLİĞİ PR
| | - V. Zülal SÖNMEZ
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ, ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ, ÇEVRE MÜHENDİSLİĞİ PR
| |
Collapse
|
5
|
Akkan T, Gedik K, Mutlu T. Protracted dynamicity of microplastics in the coastal sediment of the Southeast Black Sea. MARINE POLLUTION BULLETIN 2023; 188:114722. [PMID: 36860017 DOI: 10.1016/j.marpolbul.2023.114722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
This study provided the first evaluation of microplastic abundance, features, risk assessment, and decade-changing status in sediment along the southeastern Black Sea coast. Sediment samples were collected from thirteen stations in the Southeast Black Sea in 2012 and 2022. >70 % of the detected microplastics had a length of up to 2.5 mm and consisted of fragments and fibers in shape. The average microplastic abundance in the sediment samples was 108 MP/kg. The composition in the sediment (particles/kg) was dominated by polyethylene (PE) (44.9 %), polyethylene terephthalate (PET) (27.2 %), and polypropylene PP (15.2 %). Remarkable results for contamination factors, polymeric risk assessment and contamination risk indices. The sharp rise in MPS highlighted the heavily populated stations and stream discharge locations. The data shed light on anthropogenic and basal microplastic pollution in the Southeast Black Sea, assisting in developing effective policies for preserving and managing the Black Sea environment.
Collapse
Affiliation(s)
- Tamer Akkan
- Giresun University, Arts and Science Faculty, Biology Department, Giresun, Turkiye.
| | - Kenan Gedik
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| | - Tanju Mutlu
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| |
Collapse
|
6
|
Yin M, Yan B, Wang H, Wu Y, Wang X, Wang J, Zhu Z, Yan X, Liu Y, Liu M, Fu C. Effects of microplastics on nitrogen and phosphorus cycles and microbial communities in sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120852. [PMID: 36509346 DOI: 10.1016/j.envpol.2022.120852] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Sediments are the long-term sinks of microplastics (MPs) and nutrients in freshwater ecosystems. Therefore, understanding the effect of MPs on sediment nutrients is crucial. However, few studies have discussed the effects of MPs on nitrogen and phosphorus cycles in freshwater sediments. Herein, 0.5% (w/w) polyvinyl chloride (PVC), polylactic acid (PLA), and polypropylene (PP) MPs were added to freshwater sediments to evaluate their effects on microbial communities and nitrogen and phosphorus release. The potential biochemical functions of the bacterial communities in the sediments were predicted and assessed via 16S rRNA gene sequencing. The results showed that MPs significantly affected the microbial community composition and nutrient cycling in the sediments. PVC and PP MPs can promote microbial nitrification and nitrite oxidation, while PP can significantly promote alkaline phosphatase (ALP) activity and the abundance of the phosphorus-regulation (phoR) gene. PLA MPs had the potential to promote the abundance of microbial phosphorus transporter (ugpB), nitrogen fixation (nifD, nifH, and nifX), and denitrification (nirS, napA, and norB) genes and inhibit nitrification, resulting in massive accumulation and release of ammonia nitrogen. Although PLA MPs inhibited the activity of ALP and the abundance of the organophosphorus mineralization (phoD) gene, it could enhance dissimilatory iron and sulfite reduction, which may promote the release of sedimentary phosphorus. Our findings may help understand the mechanisms of nitrogen and phosphorus cycles and microbial communities driven by MPs in sediments and provide a basis for future assessments of the environmental behavior of MPs in freshwater ecosystems.
Collapse
Affiliation(s)
- Maoyun Yin
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Bin Yan
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Huan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China.
| | - Yan Wu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xiang Wang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Jueqiao Wang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Zhihao Zhu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Xixi Yan
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Yuting Liu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Meijun Liu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| | - Chuan Fu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404020, China.
| |
Collapse
|
7
|
Saygin H, Baysal A. Interaction of nanoplastics with simulated biological fluids and their effect on the biofilm formation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80775-80786. [PMID: 35727518 DOI: 10.1007/s11356-022-21468-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, it has become clear that the pollution by plastic debris presents global societal, environmental, and human health challenges. Moreover, humans are exposed to plastic particles in daily life and very limited information is available concerning human health, especially interactions with biological fluids. Therefore, the aim of this study is to investigate the interaction of plastic particles with simulated biological fluids (e.g., artificial saliva, artificial lysosomal fluid, phagolysosomal simulant fluid, and Gamble's solution) using various exposure stages (2 h to 80 h) and the effect of plastic particles on the formation of Staphylococcus aureus biofilms under simulated biological conditions. The plastic particles incubating various simulated biological fluids were characterized using surface functional groups, zeta potentials, and elemental composition. The results indicated that functional group indices (C-O, C = O, C-H, C = C, C-N, S = O, and OH) decreased compared to the control group during the incubation periods, except for the hydroxyl group index. The FTIR results showed that the hydroxyl group formed with the artificial lysosomal fluid, the phagolysosomal simulant fluid, and Gamble's solution. With the impact of the declining functional groups, the zeta potentials were more negative than in the control. Moreover, EDX results showed the release of the components in the particles with the interaction of simulated biological fluids as well as new components like P and Ca introduced to the particles. The biofilms were formed in the presence of nanoplastic particles under both controlled conditions and simulated biological conditions. The amount of biofilm formation was mainly affected by the surface characteristics under simulated biological conditions. In addition, the biofilm characteristics were influenced by the O/C and N/C ratios of the plastic particles with the impact of simulated biological fluids.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Asli Baysal
- Health Services Vocational School of Higher Education, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey.
| |
Collapse
|
8
|
Strokal V, Kuiper EJ, Bak MP, Vriend P, Wang M, van Wijnen J, Strokal M. Future microplastics in the Black Sea: River exports and reduction options for zero pollution. MARINE POLLUTION BULLETIN 2022; 178:113633. [PMID: 35398693 DOI: 10.1016/j.marpolbul.2022.113633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea receives increasing amounts of microplastics from rivers. In this study, we explore options to reduce future river export of microplastics to the Black Sea. We develop five scenarios with different reduction options and implement them to a Model to Assess River Inputs of pollutaNts to seA (MARINA-Global) for 107 sub-basins. Today, European rivers draining into the Black Sea export over half of the total microplastics. In 2050, Asian rivers draining into the sea will be responsible for 34-46% of microplastic pollution. Implemented advanced treatment will reduce point-source pollution. Reduced consumption or more collection of plastics will reduce 40% of microplastics in the sea by 2050. In the optimistic future, sea pollution is 84% lower than today when the abovementioned reduction options are combined. Reduction options affect the share of pollution sources. Our insights could support environmental policies for a zero pollution future of the Black Sea.
Collapse
Affiliation(s)
- Vita Strokal
- The National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Eke J Kuiper
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands; Independent researcher, The Netherlands
| | - Mirjam P Bak
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul Vriend
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands; Independent researcher, The Netherlands
| | - Mengru Wang
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands
| | - Jikke van Wijnen
- Open Universiteit, Faculty of Science - Environmental Sciences Department, Heerlen, the Netherlands
| | - Maryna Strokal
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Çevik C, Kıdeyş AE, Tavşanoğlu ÜN, Kankılıç GB, Gündoğdu S. A review of plastic pollution in aquatic ecosystems of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26230-26249. [PMID: 34853999 DOI: 10.1007/s11356-021-17648-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/16/2021] [Indexed: 05/16/2023]
Abstract
Turkey is one of the major plastic pollution sources in the Mediterranean and the Black Sea. This review summarizes present information, data, and legislation on plastic pollution in Turkish aquatic ecosystems. According to results derived from reviewed studies, both macro- and microplastic pollutions were documented in Turkish aquatic ecosystems. Most of the studies on plastic pollution in Turkish waters were performed in the marine environment while only four were conducted in freshwater environments. Spatially, the majority of these studies, which were on levels in the marine environment, were conducted on the northeastern Mediterranean coasts of Turkey, especially Iskenderun and Mersin Bays. Additional studies were carried out on either the ingestion/presence/impact of microplastics by/to aquatic organisms or the entanglement of marine organisms in plastics. There were also studies assessing the microplastic content of commercial salt, and another has reported microplastic presence in traditional stuffed mussels sold in Turkish streets. Some studies were conducted on microplastic presence and/or their removal in wastewater treatment plants in Mersin, Adana, Mugla, and Istanbul cities. Macro- and microliter loading from a few Turkish rivers to the sea was also estimated. All these investigations indicate that Turkish aquatic environments have significant plastic pollution problems, which were also underlined by the legislative studies. The need for further studies in this field still exists, especially in freshwater environments.
Collapse
Affiliation(s)
- Cem Çevik
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey
| | - Ahmet Erkan Kıdeyş
- Institute of Marine Sciences, Limonlu, Erdemli, Middle East Technical University, Mersin, Turkey
| | - Ülkü Nihan Tavşanoğlu
- Faculty of Sciences, Department of Biology, Çankırı Karatekin University, Çankırı, Turkey
| | | | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey.
| |
Collapse
|
10
|
Ammeri RW, Di Rauso Simeone G, Hassen W, Ibrahim C, Ammar RB, Hassen A. Bacterial consortium biotransformation of pentachlorophenol contaminated wastewater. Arch Microbiol 2021; 203:6231-6243. [PMID: 34591145 DOI: 10.1007/s00203-021-02589-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The aims of this study were (i) to compare PCP removal (100 mg L-1) by two bacterial consortia B1 and B2 in sterile wastewater (STWW) and liquid mineral medium (MSM), (ii) PCP effect in biofilm formation and antimicrobial susceptibility. PCP removal was measured by high-performance liquid chromatography (HPLC) during 168 h at 30 °C. Biofilm formation was assessed with two approaches: Congo Red Agar and Microtiter-plate. Antimicrobial susceptibility was determined by the agar disc diffusion technique. The results showed that the PCP removal for consortium B1 and B2 after 168 h was 70 and 97.5% in STWW; 62.2 and 85.5% in MSM, respectively. In addition, PCP addition showed an increase in biofilm development especially for B2 consortium around 3.5 nm in 100 mg L-1 PCP. PCP added in the Muller Hinton (MH) medium and Gentamicin disc showed a clear increase in diameter of cell lysis around 2 to 4.5 cm.
Collapse
Affiliation(s)
- Rim Werheni Ammeri
- Laboratoire de Traitement Et Valorisation Des Rejets Hydriques (LTVRH), Water Research and Technology Center (CERTE), Technopole Borj-Cédria, B.P. 273, 8020, Soliman, Tunisia. .,Eremology and Combating Desertification, Arid Regions Institute of Medenine, Medenine, Tunisia.
| | - Giuseppe Di Rauso Simeone
- Dipartimento Di Agraria, Università Degli Studi Di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied To the Environmental, APAE Higher Institute of Applied Sciences and Technology Mahdia, the University of Monastir, Monastir, Tunisia
| | - Chourouk Ibrahim
- Laboratoire de Traitement Et Valorisation Des Rejets Hydriques (LTVRH), Water Research and Technology Center (CERTE), Technopole Borj-Cédria, B.P. 273, 8020, Soliman, Tunisia.,Dipartimento Di Agraria, Università Degli Studi Di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Rym Ben Ammar
- Dipartimento Di Agraria, Università Degli Studi Di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Abdennaceur Hassen
- Laboratoire de Traitement Et Valorisation Des Rejets Hydriques (LTVRH), Water Research and Technology Center (CERTE), Technopole Borj-Cédria, B.P. 273, 8020, Soliman, Tunisia
| |
Collapse
|