1
|
Zhang X, Liu Y, Sun H, Chen S, Tang P, Hu Q, He M, Tang N, Li Z, Chen D. Long-term dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) reduced feeding in common carp (Cyprinus carpio): Via the JAK-STAT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123966. [PMID: 38621451 DOI: 10.1016/j.envpol.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Sun
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Hu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Zhang X, Huang Y, Yang L, Chen S, Liu Y, Tang N, Li Z, Zhang X, Li L, Chen D. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces oxidative damage promoting cell apoptosis primarily via mitochondrial pathway in the hepatopancreas of carp, Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116192. [PMID: 38461574 DOI: 10.1016/j.ecoenv.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Yujie Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China; Yuxi Agriculture Vocation-Technical College, 41 Xiangjiazhuang Road, Yuxi, Yunnan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Chen G, Deng X, Wang J. Pollution level, spatial distribution, and congener fractionation characteristics of low-brominated polybrominated diphenyl ethers (PBDEs) in sediments around Chaohu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:631. [PMID: 35920914 DOI: 10.1007/s10661-022-10246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As new persistent organic compounds, polybrominated diphenyl ethers (PBDEs) have aroused important concern because of their potential bioaccumulation and possible ecological and health risk. To examine the sources and temporal variation of PBDEs in Chaohu Lake in eastern China, the surface sediments from Nanfei River (NFR) and core sediments from four estuaries were measured. It showed that low-brominated congeners were dominant, from MonoBDEs to HeptaBDEs (referred to as Σ39PBDE). Concentrations of ∑39PBDE and the ratios of (BDE-47 + BDE-99 + BDE-100)/(BDE-153 + BDE-154) were much greater in surface sediments than in core sediments. The highest concentration was observed in a site close to the outfall of a municipal sewage treatment plant (MSTP), and the ratio was significantly correlated with ∑39PBDE. These results suggested that PentaBDE and OctaBDE commercial mixtures were widely used around Chaohu Lake and the effluent of municipal sewage was a dominant source of PBDEs to surface sediment. Compared to data from other freshwater systems around the world, the concentrations of BDE-47 and BDE-99 in this study were in the middle of the range of global data, but BDE-183 concentrations were at the high end of the range. Due to restrictions on the usage of PentanBDE and OctaBDE commercial mixtures, reductions of PBDE levels from subsurface to superficial layer were observed in all estuaries. Elevated contribution by MonoBDEs to ∑39PBDE in the estuary of the only outflow river suggests significant congener fractionation. TriBDEs, TetraBDEs, and HexaBDEs appeared to pose low risks in all surface sediments, but moderate to high risks may be expected for PentaBDEs. Overall, the results would contribute to a better understanding of the sources and environmental fate of PBDEs in the studied eutrophicated lake.
Collapse
Affiliation(s)
- Guangzhou Chen
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei, 230601, China.
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei, 230601, China.
- Anhui Research Academy of Ecological Civilization, Anhui JianZhu University, Hefei, 230601, China.
| | - Xinyue Deng
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei, 230601, China
| | - Jizhong Wang
- LID, Guangzhou GRG Metrology & Test (Hefei) CO, Hefei, 230088, China.
| |
Collapse
|
4
|
Zhao X, Shi Z. Legacy brominated flame retardants in human milk from the general population in Beijing, China: Biomonitoring, temporal trends from 2011 to 2018, and nursing infant's exposure assessment. CHEMOSPHERE 2021; 285:131533. [PMID: 34273701 DOI: 10.1016/j.chemosphere.2021.131533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 05/06/2023]
Abstract
Three kinds of legacy brominated flame retardants (BFRs), including eight polybrominated diphenyl ether (PBDE) congeners, tetrabromobisphenol A (TBBPA), and three hexabromocyclododecane (HBCDD) isomers, were analyzed in 105 human milk samples collected in 2018 from Beijing, China. The tested BFRs all showed high detection frequencies, and HBCDD was the most abundant BFR, with a median level of 7.64 × 103 pg/g lipid, followed by BDE-153 (389 pg/g lipid), BDE-209 (283 pg/g lipid), and TBBPA (271 pg/g lipid). By comparing the results of the present study with those of our previous Beijing human milk surveys conducted in 2014 and 2011, the contamination of TBBPA and HBCDD increased steadily from 2011 to 2018, whereas that of PBDEs decreased sharply during this period. Our results suggested that the production and consumption of BFRs in China have shifted from PBDEs to other FRs. Education level and the consumption of animal-derived foods such as eggs and meat were identified as major influencing factors for some BFRs. For nursing infants, the median levels of lower bound BFR daily intake via human milk ingestion ranged from 4.62 × 10-2 ng/kg bw/day for BDE-154 to 30.6 ng/kg bw/day for HBCDD. The daily intake of most BFRs by breastfeeding is unlikely to pose significant health risks for Beijing nursing infants. However, the minimum margin of exposure (MOE) of HBCDD was below its threshold value, which indicated that its daily intake might raise health concerns for some breastfed infants.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Yin H, Ma J, Li Z, Li Y, Meng T, Tang Z. Polybrominated Diphenyl Ethers and Heavy Metals in a Regulated E-Waste Recycling Site, Eastern China: Implications for Risk Management. Molecules 2021; 26:2169. [PMID: 33918776 PMCID: PMC8069465 DOI: 10.3390/molecules26082169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
Serious pollution of multiple chemicals in irregulated e-waste recycling sites (IR-sites) were extensively investigated. However, little is known about the pollution in regulated sites. This study investigated the occurrence of 21 polybrominated diphenyl ethers (PBDEs) and 10 metals in a regulated site, in Eastern China. The concentrations of PBDEs and Cd, Cu, Pb, Sb, and Zn in soils and sediments were 1-4 and 1-3 orders of magnitude lower than those reported in the IR-sites, respectively. However, these were generally comparable to those in the urban and industrial areas. In general, a moderate pollution of PBDEs and metals was present in the vegetables in this area. A health risk assessment model was used to calculate human exposure to metals in soils. The summed non-carcinogenic risks of metals and PBDEs in the investigated soils were 1.59-3.27 and 0.25-0.51 for children and adults, respectively. Arsenic contributed to 47% of the total risks and As risks in 71.4% of the total soil samples exceeded the acceptable level. These results suggested that the pollution from e-waste recycling could be substantially decreased by the regulated activities, relative to poorly controlled operations, but arsenic pollution from the regulated cycling should be further controlled.
Collapse
Affiliation(s)
- Hongmin Yin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; (H.Y.); (T.M.)
| | - Jiayi Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (J.M.); (Y.L.)
| | - Zhidong Li
- Cangzhou Ecology and Environment Bureau, Cangzhou 061000, China;
| | - Yonghong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (J.M.); (Y.L.)
| | - Tong Meng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; (H.Y.); (T.M.)
| | - Zhenwu Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; (H.Y.); (T.M.)
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (J.M.); (Y.L.)
| |
Collapse
|