1
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
2
|
Identification of heavy metal pollutants and their sources in farmland: an integrated approach of risk assessment and X-ray fluorescence spectrometry. Sci Rep 2022; 12:12196. [PMID: 35842500 PMCID: PMC9288480 DOI: 10.1038/s41598-022-16177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation and assessment of farmland pollution require an efficient method to identify heavy metal (HM) pollutants and their sources. In this study, heavy metals (HMs) in farmland were determined efficiently using high-precision X-ray fluorescence (HDXRF) spectrometer. The potential ecological risk and health risk of HMs in farmland near eight villages of Wushan County in China were quantified using an integrated method of concentration-oriented risk assessment (CORA) and source-oriented risk assessment (SORA). The CORA results showed that Cd in farmland near the villages of Liuping (LP) and Jianping (JP) posed a "very high" potential ecological risk, which is mainly ascribed to soil Cd (single potential ecological risk index ([Formula: see text]) of Cd in villages LP and JP, [Formula: see text] = 2307 and 568 > 320). A "moderate" potential ecological risk was present in other six villages. The overall non-carcinogenic risk (hazard index (HI) = 1.2 > 1) of HMs for children in village LP was unacceptable. The contributions of HMs decrease in the order of Cr > As > Cd > Pb > Ni > Cu > Zn. The total carcinogenic risk (TCR = 2.1 × 10-4 > 1.0 × 10-4) of HMs in village LP was unacceptable, with HMs contributions decreasing in the order of Cr > Ni > Cd > As > Pb. Furthermore, three source profiles were assigned by the positive matrix factorization: F1: agricultural activity; F2: geological anomaly originating from HMs-rich rocks; F3: the natural geological background. According to the results of SORA, F2 was the highest contributor to PER in village LP, up to 64.4%. Meanwhile, the contributions of three factors to HI in village LP were 19.0% (F1), 53.6% (F2), and 27.4% (F3), respectively. It is worth noting that TCR (1.2 × 10-4) from F2 surpassed the threshold of 1.0 × 10-4, with an unacceptable carcinogenic risk level. As mentioned above, the HM pollutants (i.e., Cd and Cr) and their main sources (i.e., F2) in this area should be considered. These results show that an integrated approach combining risk assessments with the determination of HM concentration and identification of HM source is effective in identifying HM pollutants and sources and provides a good methodological reference for effective prevention and control of HM pollution in farmland.
Collapse
|
3
|
Li H, Sun F, Hu S, Sun Q, Zou N, Li B, Mu W, Lin J. Determination of Market, Field Samples, and Dietary Risk Assessment of Chlorfenapyr and Tralopyril in 16 Crops. Foods 2022; 11:foods11091246. [PMID: 35563970 PMCID: PMC9102846 DOI: 10.3390/foods11091246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
The frequent and massive use of chlorfenapyr has led to pesticide residues in crops, threatening food safety and human health. However, there is limited research on the detection of tralopyril, which is the major metabolite of chlorfenapyr with high toxicity. This study aimed to develop a novel, sensitive, and highly efficient method for the determination of chlorfenapyr and tralopyril residues in 16 crops. The optimized purification procedure provided satisfactory recovery of 76.6-110%, with relative standard deviations of 1.3-11.1%. The quantification values of pesticides in crop matrixes were all 0.01 μg kg-1. The optimal method was adopted to determine the chlorfenapyr and tralopyril residues in field trials in 12 regions in China and monitor their residues in 16 agricultural products. The results of the dissipation and terminal residue experiments show that the final residue of chlorfenapyr was less than MRL (maximum residue limit) and no tralopyril was detected in the field samples. Moreover, the qualification proportion of these residues in market samples were up to 99.5%. The RQ (risk quotient) values of chlorfenapyr and chlorfenapyr with consideration of tralopyril were both apparently lower than an RQ of 100%, indicating an acceptable level. This research provides a thorough long-term dietary risk evaluation on chlorfenapyr and tralopyril and would provide reference for their scientific and safe utilization.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
| | - Fengshou Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
| | - Shuai Hu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
| | - Qi Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (H.L.); (S.H.); (N.Z.); (B.L.); (W.M.)
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Taian 271018, China; (F.S.); (Q.S.)
- Correspondence: ; Tel.: +86-0538-8242611
| |
Collapse
|