1
|
Fang S, Hua C, Yang J, Liu F, Wang L, Wu D, Ren L. Combined pollution of soil by heavy metals, microplastics, and pesticides: Mechanisms and anthropogenic drivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136812. [PMID: 39675088 DOI: 10.1016/j.jhazmat.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Soil is the foundation of terrestrial ecosystems and a critical resource for agricultural activities. This study investigated internal mechanism and interaction of heavy metals, pesticides (atrazine, pyrimazole and chlorpyrifos) and microplastics in soil. Specifically, certain sampling points exhibited elevated levels of individual heavy metals (Cd, Cr, Zn), exceeding the screening values, while both microplastics and pesticides demonstrated high variability, increasing the potential ecological risks. The interaction between microplastics, heavy metals, and pesticides is complex, involving electrostatic adsorption, surface complexation, biofilm mediation, and physical absorption. From a broader perspective, both heavy metals and microplastics were found to exacerbate the ecological risks posed by pesticides. Further, structural equation model and geographical weighted regression were used to reveal the driving mechanism behind complex pollution, with economic development emerging as a significant factor influencing pollution levels. These findings enhance our understanding of the combined pollution of heavy metals, microplastics, and pesticides.
Collapse
Affiliation(s)
- Shumin Fang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Chunyu Hua
- Linyi Vocational University of Science and Technology, Shandong Province 276000, PR China
| | - Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Feifei Liu
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Dongyue Wu
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China.
| |
Collapse
|
2
|
Wang Y, Xiao N, Zhao J, Su Y, Guo Z, Wang B, Luo Z, Jia H, Xing B. Combined contamination of tire and road wear microplastics with heavy metals in expressway tunnels: occurrence characteristics and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136278. [PMID: 39461292 DOI: 10.1016/j.jhazmat.2024.136278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tire and road wear microplastics (TRWMPs), as an important type of microplastics, have attracted increasing attention. However, current studies on their contamination within expressway tunnels remain limited. Therefore, we investigated the occurrence characteristics of TRWMPs in dusts from various tunnels, and combined contamination with heavy metals (HMs). The results showed that the abundance of TRWMPs in expressway tunnel dust (53,778 n/kg) was much higher than that sampled from other land use types (1360-4960 n/kg) in the same region. A large amount of polyamide was released into the environment along with wear particles from the vehicles. Also, the abundance of TRWMPs inside tunnels was greater than outside, and the proportion of large-size TRWMPs was higher inside tunnels. TRWMPs was symmetrically distributed with respect to the center of expressway tunnel. The pollution load index (PLI) and ecological risk index (H) indicated that study area was heavily contaminated with TRWMPs. There was a significant positive correlation between the abundance of TRWMPs and concentration of Cr (p < 0.01) in dust, and their risk assessment and health risk fluctuations were almost identical. Thus, the study is of great significance for elucidating the synergistic contamination and potential risk of TRWMPs and HMs in expressway tunnels.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, PR China.
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210023, China
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
3
|
An Q, Zhou T, Wen C, Yan C. The effects of microplastics on heavy metals bioavailability in soils: a meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132369. [PMID: 37634382 DOI: 10.1016/j.jhazmat.2023.132369] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The combined pollution of heavy metals and microplastics is common in natural soil environments. Here, we collected 790 data sets from 39 studies to investigate the effects of microplastics on heavy metal bioavailability. The results showed that microplastics could increase the bioavailability of Cu, Pb, Cd, Fe, and Mn. The heavy metal bioavailability was positively correlated with microplastic size, soil sand concentration, and exposure time, but negatively correlated with soil pH and organic matter. The bioavailability of heavy metals can be promoted by microplastics of all shapes. Hydrolysable microplastics, which contain N, might have less influence. Furthermore, the size of microplastics and soil organic matter were positively correlated with the acid-soluble and reducible fractions of heavy metals, while the microplastic concentration, soil pH, and exposure time were positively correlated with the oxidizable fractions of heavy metals. The interaction detector results indicated that there was an interaction between microplastic characteristics, especially polymer types, and soil physicochemical indexes on the bioavailability of heavy metals. These findings suggested that long-term combined pollution of microplastics and heavy metals might increase heavy metal bioavailability in soils, thereby extending their migratory and hazardous range and bringing further risks to the environment and public health safety.
Collapse
Affiliation(s)
- Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Feng Y, Xu N, Peng L, Shen J, Yang X. Nano-size plastics inhibited Cr(VI) species transformation during facilitated transport of green synthesized nano-iron in the presence of oxyanions. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131716. [PMID: 37245368 DOI: 10.1016/j.jhazmat.2023.131716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Remediating hexavalent chromium (Cr(VI))-contaminated soils using green synthesized nano-iron (g-nZVI), which merits high reactivity, low cost, and environmental friendliness, has attracted significant attention. However, the broad existence of nano plastics (NPs) could adsorb Cr(VI) and subsequently influence in situ remediation of Cr(VI)-contaminated soil by g-nZVI. To clarify this issue and improve the remediation efficiency, we investigated the co-transport between Cr(VI) and g-nZVI coexisting with sulfonyl-amino-modified nano plastics (SANPs) in water-saturated sand media in the presence of oxyanions (i.e., phosphate and sulfate) at environmentally relevant conditions. This study found that SANPs inhibited the Cr(VI) reduction to Cr(III) (i.e., Cr2O3) by g-nZVI, attributed to nZVI-SANPs hetero-aggregates and Cr(VI) adsorption on SANPs. Notably, "nZVI-[SANPs•••Cr(III)]" agglomerate happened via complexation of [-NH3•••Cr(III)] between Cr(III) from Cr(VI) reduced by g-nZVI and amino group on SANPs. Further, the co-presence of phosphate (stronger adsorption on SANPs than g-nZVI) remarkably suppressed Cr(VI) reduction. Then, it promoted the co-transport of Cr(VI) with nZVI-SANPs hetero-aggregates, which could potentially threaten underground water. Fundamentally, sulfate would instead concentrate on SANPs, hardly impacting the reactions between Cr(VI) and g-nZVI. Overall, our findings provide crucial insights into understanding the Cr(VI) species transformation during co-transport with g-nZVI in ubiquitous complexed soil environments (i.e., containing oxyanions) contaminated by SANPs.
Collapse
Affiliation(s)
- Yifei Feng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Lei Peng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiayu Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangrong Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Liu L, Zhou Y, Wang C, Liu H, Xie R, Wang L, Hong T, Hu Q. Oxidative Damage in Roots of Rice (Oryza sativa L.) Seedlings Exposed to Microplastics or Combined with Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:15. [PMID: 36520278 DOI: 10.1007/s00128-022-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the effect of 10-40 mg L-1 polystyrene microplastics (PS-MPs), 0.05 mg L-1 cadmium (Cd) and their combination on the growth and related physiological and toxicological responses in Oryza sativa L. seedling roots. Results showed that the fresh weight, dry weight and root lengths of treatments by PS-MPs, Cd single and combinative were all lower than the control, and opposite phenomenon appeared in production of superoxide radical (O2-.), malondialdehyde (MDA) and carbonylated protein. Superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities induced by 10-40 mg L-1 PS-MPs and combination with Cd were almost higher than those by Cd alone, expression of heat shock protein (HSP)70 and carbonylated protein slightly decreased. In compound exposure, 10-20 mg L-1 PS-MPs alleviated Cd damage and promoted root growth by increasing SOD and POD activities, but 40 mg L-1 PS-MPs accelerated the accumulation of Cd, MDA, and O2-., which was responsible for decreasing root biomass and the aggravating necrosis of root tip cells.
Collapse
Affiliation(s)
- Ling Liu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Ying Zhou
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China.
| | - Ruili Xie
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Ling Wang
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Tingting Hong
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Qiannan Hu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| |
Collapse
|