1
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
2
|
Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021; 172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The regeneration process of human bones is very complicated, the management and treatment of bone damage caused by diseases are the main problems faced by clinicians worldwide. It is known that cell-based stem cell therapy together with biomaterials is a fast-developing method of tissue regeneration. This review focuses on the different types and main characteristics of scaffolds and stem cells suitable for bone regeneration, and aims to provide a state-of-the-art description of the current treatment of common bone metabolism related diseases such as osteoarthritis, osteoporosis and osteosarcoma and the strategies based on stem cell biological scaffolds used in bone tissue engineering. This method may provide a new treatment option for the treatment of common bone metabolism-related diseases that cannot be cured by ordinary and routine applications. Three databases (PubMed, CNKI and Web of Science) search terms used to write this review are: "arthritis", "osteoporosis", "osteosarcoma", "bone tissue engineering", "mesenchymal stem cells", "materials", "bioactive scaffolds" and their combinations, and the most relevant studies are selected. As a conclusion, it needs to be emphasized that despite the encouraging results, further development is needed due to the need for more in-depth research, standardization of stem cell manufacturing processes, large-scale development of clinical methods for bone tissue engineering, and market regulatory approval. Although the research and application of tissue regeneration technology and stem cells are still in their infancy, the application prospect is broad and it is expected to solve the current clinical problems.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| |
Collapse
|
3
|
Sallent I, Capella-Monsonís H, Procter P, Bozo IY, Deev RV, Zubov D, Vasyliev R, Perale G, Pertici G, Baker J, Gingras P, Bayon Y, Zeugolis DI. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol 2020; 8:952. [PMID: 32984269 PMCID: PMC7490292 DOI: 10.3389/fbioe.2020.00952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promoting de novo bone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.
Collapse
Affiliation(s)
- Ignacio Sallent
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Héctor Capella-Monsonís
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Philip Procter
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- GPBio Ltd., Shannon, Ireland
| | - Ilia Y. Bozo
- Histograft LLC, Moscow, Russia
- Federal Medical Biophysical Center of FMBA of Russia, Moscow, Russia
| | - Roman V. Deev
- Histograft LLC, Moscow, Russia
- I.I. Mechnikov North-Western State Medical University, Saint Petersburg, Russia
| | - Dimitri Zubov
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | - Roman Vasyliev
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | | | | | - Justin Baker
- Viscus Biologics LLC, Cleveland, OH, United States
| | | | - Yves Bayon
- Sofradim Production, A Medtronic Company, Trévoux, France
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
4
|
Henze K, Herten M, Haversath M, Busch A, Brandau S, Hackel A, Flohé SB, Jäger M. Surgical vacuum filter-derived stromal cells are superior in proliferation to human bone marrow aspirate. Stem Cell Res Ther 2019; 10:338. [PMID: 31753037 PMCID: PMC6868799 DOI: 10.1186/s13287-019-1461-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background During joint replacement, surgical vacuum suction guarantees a sufficient overview on the situs. We assume high concentrations of mesenchymal stromal cells (MSCs) on surgical vacuum filters. We compared the in vitro proliferative and differentiation potency of cells from the following: (i) bone marrow (BM), (ii) cancellous bone (CB), (iii) vacuum filter (VF), and (iv) cell saver filtrate reservoir (SF) in 32 patients undergoing elective total hip replacement. Methods Mononuclear cells (MNC) were isolated, and cell proliferation and colony-forming units (CFU) were measured. Adherent cells were characterized by flow cytometry for MSC surface markers. Cells were incubated with osteogenic, adipogenic, and chondrogenic stimuli. Cells were cytochemically stained and osteoblastic expression (RUNX-2, ALP, and BMP-2) investigated via qPCR. Results Dependent on the source, initial MNC amount as well as CFU number was significantly different whereas generation time did not vary significantly. CFU numbers from VF were superior to those from SR, BM, and CB. The resulting amount of MSC from the respective source was highest in the vacuum filter followed by reservoir, aspirate, and cancellous bone. Cells from all groups could be differentiated into the three mesenchymal lines demonstrating their stemness nature. However, gene expression of osteoblastic markers did not differ significantly between the groups. Conclusion We conclude that surgical vacuum filters are able to concentrate tissue with relevant amounts of MSCs. A new potent source of autologous regeneration material with clinical significance is identified. Further clinical studies have to elucidate the regenerative potential of this material in an autologous setting.
Collapse
Affiliation(s)
- Katharina Henze
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Monika Herten
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marcel Haversath
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - André Busch
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Alexander Hackel
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Stefanie B Flohé
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany. .,Department of Orthopaedics, Trauma and Reconstructive Surgery, University of Duisburg Essen & St. Marien Hospital Mülheim an der Ruhr / Contilia, Kaiserstrasse 50, 45468, Mülheim/Ruhr, Germany.
| |
Collapse
|
5
|
Granchi D, Ciapetti G, Gómez-Barrena E, Rojewski M, Rosset P, Layrolle P, Spazzoli B, Donati DM, Baldini N. Biomarkers of bone healing induced by a regenerative approach based on expanded bone marrow-derived mesenchymal stromal cells. Cytotherapy 2019; 21:870-885. [PMID: 31272868 DOI: 10.1016/j.jcyt.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Safety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product. MATERIALS AND METHODS The bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow-derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression. RESULTS We found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy. DISCUSSION CICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial.
Collapse
Affiliation(s)
- Donatella Granchi
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gabriela Ciapetti
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetic Ulm (IKT Ulm), Ulm, Germany
| | - Philippe Rosset
- Service of Orthopaedic Surgery and Traumatology, CHRU, Tours, France
| | - Pierre Layrolle
- Inserm, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Benedetta Spazzoli
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Nicola Baldini
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Effectiveness of a single intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with grade 3 and 4 knee osteoarthritis. Heliyon 2018; 4:e00871. [PMID: 30364761 PMCID: PMC6197942 DOI: 10.1016/j.heliyon.2018.e00871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/21/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Aim To evaluate the clinical efficacy and safety of an intra-articular injection of bone marrow aspirate concentrate (BMAC) as a treatment option for osteoarthritis (OA) of the knee. Materials and methods Between June 2014 and February 2017, data from 233 patients with knee osteoarthritis treated with BMAC injection at a single center, were retrospectively evaluated. Only patients with idiopathic osteoarthritis were included. Exclusion criteria were post-traumatic osteoarthritis, previous knee surgery, age less than 50 years old or more than 85 years old, active infection, uncontrolled diabetes mellitus, rheumatological or other systemic disease, malignancy, or treatment with immunosuppressive drugs. Bone marrow from the iliac crest was aspirated/concentrated with a standardized technique using a single-spin manual method. Patients were evaluated before and after the procedure, using the numeric pain scale (NPS) and Oxford knee score (OKS). Mean follow-up period was 11 months, range (6–30 months). Results A total of 121 of 233 patients had completed data as previously defined and were included in the statistical analysis. There were 85 females and 36 males, with mean age 70 years (range 50–85). Compared to baseline, the mean NPS decreased from 8.33 to 4.49 (p < 0.001) and the mean OKS increased from 20.20 to 32.29 (P < 0.001) at final follow-up. There were no complications. Conclusion A single intra-articular injection of BMAC is a safe and reliable procedure that results in clinical improvement of knee OA.
Collapse
|
7
|
Luangphakdy V, Boehm C, Pan H, Herrick J, Zaveri P, Muschler GF. Assessment of Methods for Rapid Intraoperative Concentration and Selection of Marrow-Derived Connective Tissue Progenitors for Bone Regeneration Using the Canine Femoral Multidefect Model. Tissue Eng Part A 2016; 22:17-30. [PMID: 26538088 PMCID: PMC5028130 DOI: 10.1089/ten.tea.2014.0663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Treatment of large bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials and strategies. Local deficiency in osteogenic connective tissue progenitors (CTP-Os) due to tissue loss is one of the central biological barriers to bone regeneration. Density separation (DS) and selective retention (SR) represent two promising methods that can be used intraoperatively to rapidly concentrate cells and potentially select CTP-Os. This project was designed to compare DS and SR using the canine femoral multidefect (CFMD) model. Mineralized cancellous allograft (MCA) was used as a standardized scaffold for cell transplantation. Two experiments were performed using a cohort of six animals in each comparison. In Cohort I, unprocessed bone marrow aspirate (BMA) clot was compared to DS processing. MCA combined with raw BMA or DS processed cells produced a robust and advanced stage of bone regeneration throughout the defect in 4 weeks with reconstitution of hematopoietic marrow. However, the retention of DS processed cells and CTP-Os in the MCA matrix was low compared to BMA clot. In Cohort II, MCA with DS-T cells (addition of calcium chloride thrombin to induce clotting and enhance cell and CTP-O retention) was compared to MCA with SR cells. A mean of 276 ± 86 million nucleated cells and 29,030 ± 10,510 CTP-Os were implanted per defect in the DS-T group. A mean of 76 ± 42 million nucleated cells and 30,266 ± 15,850 CTP-Os were implanted in the SR group. Bone formation was robust and not different between treatments. Histologically, both groups demonstrated regeneration of hematopoietic marrow tissue. However, SR sites contained more hematopoietic vascular tissues, less fibrosis, and less residual allograft, particularly in the intramedullary cavity, suggesting a more advanced stage of remodeling (p = 0.04). These data demonstrate excellent overall performance of DS and SR processing methods. Both methods achieve a bone regeneration response that approaches the limits of performance that can be achieved in the CFMD model. Further advancement and comparison of these intraoperative bone marrow cell processing methods will require use of a larger and more biologically compromised defect site to guide the next steps of preclinical development and optimization.
Collapse
Affiliation(s)
- Viviane Luangphakdy
- 1 Department of Biomedical Engineering (ND20), Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Cynthia Boehm
- 1 Department of Biomedical Engineering (ND20), Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Hui Pan
- 1 Department of Biomedical Engineering (ND20), Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - James Herrick
- 2 Bone Histomorphometry Core Lab, Department of Orthopedics, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Phil Zaveri
- 1 Department of Biomedical Engineering (ND20), Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - George F Muschler
- 1 Department of Biomedical Engineering (ND20), Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio.,3 Department of Orthopoedic Surgery, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
8
|
Kubosch EJ, Bernstein A, Wolf L, Fretwurst T, Nelson K, Schmal H. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. BMC Musculoskelet Disord 2016; 17:77. [PMID: 26873750 PMCID: PMC4752776 DOI: 10.1186/s12891-016-0930-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background Our study aim was to compare allogeneic cancellous bone (ACB) and synthetic or highly-processed xenogeneic bone substitutes (SBS) in the treatment of skeletal defects in orthopedic surgery. Methods 232 patients treated for bony lesions with ACB (n = 116) or SBS (n = 116) within a 10-year time period were included in this case–control study. Furthermore, both materials were seeded with human osteoblasts (hOB, n = 10) and analyzed by histology, for viability (AlamarBlue®) and protein expression activity (Luminex®). Results The complication rate was 14.2 %, proportion of defects without bony healing 3.6 %; neither outcome parameter differed comparing the intervention groups. Failed consolidation correlated with an increase in complications (p < 0.03). The rate of complications was further highly significant in association with the location of use (p < 0.001), but did not depend on age, ASA risk classification, BMI, smoking behavior or type of insurance. However, those factors did significantly influence the bony healing rate (p < 0.02). Complication and consolidation rates were independent of gender and the filling substances employed within the different locations. Histological examination revealed similar bone structures, whereas cell remnants were apparent only in the allografts. Both materials were biocompatible in-vitro, and seeded with human osteoblasts. The cells remained vital over the 3-week culture period and produced microscopically typical bone matrix. We observed initially increased expression of osteocalcin, osteopontin, and osteoprotegerin as well as leptin and adiponectin secretion declining after 1 week, especially in the ACB group. Conclusion Although both investigated materials appeared to be similarly suitable for the treatment of skeletal lesions in-vivo and in-vitro, outcome was decisively influenced by other factors such as the site of use or epidemiological parameters.
Collapse
Affiliation(s)
- Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany.
| | - Anke Bernstein
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany.
| | - Laura Wolf
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany.
| | - Tobias Fretwurst
- Department of Craniomaxillofacial Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany.
| | - Katja Nelson
- Department of Craniomaxillofacial Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany.
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center, Freiburg, Germany. .,Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Reich W, Bilkenroth U, Schubert J, Wickenhauser C, Eckert AW. Surgical treatment of bisphosphonate-associated osteonecrosis: Prognostic score and long-term results. J Craniomaxillofac Surg 2015; 43:1809-22. [PMID: 26321065 DOI: 10.1016/j.jcms.2015.07.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/19/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022] Open
Abstract
Over a century after the first synthesis of bisphosphonates (1897) and a decade (2003) since the initial report on bisphosphonate-related osteonecrosis of the jaw (ONJ), this osteopathy remains a serious clinical challenge. A single center longitudinal study (2005-2014) was carried out to prospectively characterize inpatients with manifest ONJ and to evaluate their outcomes. The data recorded were: medical history, bisphosphonate treatment, localization, imaging, treatment, histomorphological features, and complications. A prognostic score (modified UCONN-Score) was adopted to predict outcomes. Eighty patients were included (mean age 69.4 years; 40 male, 40 female). Breast cancer (n = 25), multiple myeloma (n = 16), and prostate cancer (n = 15) were the three most common malignancies; and cardiovascular disease (n = 31), diabetes mellitus (16), and renal disorders (6) were the most important comorbidities. The severity of ONJ was stage I in three patients, stage II in 37, and stage III in 40, being predominantly localized in the posterior mandible and needing gradual resection. The average duration of bisphosphonate treatment was 38.3 months. The typical histological aspects of ONJ were predominantly osteonecrosis, bone marrow fibrosis, and bacterial colonization (Actinomyces) with suppurative inflammation. Within the resected jawbone a primary malignancy was diagnosed in two cases. The overall success rate was 83.6% (follow-up 23.5 months), with a UCONN-Score ≥15 predicting unfavorable treatment results (OR = 5.2). The past decade has enhanced experience with ONJ treatment and knowledge about its pathogenesis, which seems to be a multistep process. This study demonstrates the importance of bone and multilayer soft tissue management, preferably as an early intervention. The UCONN-Score might help to assess individual prognosis in ONJ surgery and the potential benefit of an antiresorptive drug holiday. To our knowledge it is the first use of a prognostic score in ONJ surgery.
Collapse
Affiliation(s)
- Waldemar Reich
- Department of Oral and Plastic Maxillofacial Surgery (Temporary Head: Prof. Dr. Dr. Alexander Walter Eckert, MD, DMD, PhD), Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany.
| | - Udo Bilkenroth
- Institute of Pathology Lutherstadt Eisleben (Head: Dr. Udo Bilkenroth, MD, PhD), Hohetorstr. 25, 06295 Lutherstadt, Eisleben, Germany
| | - Johannes Schubert
- Department of Oral and Plastic Maxillofacial Surgery (Temporary Head: Prof. Dr. Dr. Alexander Walter Eckert, MD, DMD, PhD), Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology (Head: Prof. Dr. Claudia Wickenhauser, MD, PhD), Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany.
| | - Alexander Walter Eckert
- Department of Oral and Plastic Maxillofacial Surgery (Temporary Head: Prof. Dr. Dr. Alexander Walter Eckert, MD, DMD, PhD), Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
10
|
Kircher J, Patzer T, Ziskoven C, Bittersohl B, Hedtmann A, Krauspe R. Arthroscopically assisted retrograde drilling of the humeral head with a guiding device. Knee Surg Sports Traumatol Arthrosc 2015; 23:1442-1446. [PMID: 24296988 DOI: 10.1007/s00167-013-2783-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/16/2013] [Indexed: 10/26/2022]
Abstract
This manuscript describes the successful treatment of a steroid-induced avascular necrosis of the humeral head using arthroscopically assisted retrograde drilling of a stage II lesion using a guiding device. At the final follow-up 19 month post-operatively, the patient presented pain-free without functional limitations although the osteonecrosis had not been fully healed.
Collapse
Affiliation(s)
- Jörn Kircher
- Department of Orthopaedics, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40255, Düsseldorf, Germany.
- Department of Shoulder and Elbow Surgery, Klinik Fleetinsel Hamburg, Admiralitästrasse 2-4, 20459, Hamburg, Germany.
| | - Thilo Patzer
- Department of Orthopaedics, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40255, Düsseldorf, Germany
| | - Christoph Ziskoven
- Department of Orthopaedics, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40255, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopaedics, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40255, Düsseldorf, Germany
| | - Achim Hedtmann
- Department of Shoulder and Elbow Surgery, Klinik Fleetinsel Hamburg, Admiralitästrasse 2-4, 20459, Hamburg, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40255, Düsseldorf, Germany
| |
Collapse
|
11
|
Hakimi M, Grassmann JP, Betsch M, Schneppendahl J, Gehrmann S, Hakimi AR, Kröpil P, Sager M, Herten M, Wild M, Windolf J, Jungbluth P. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting. PLoS One 2014; 9:e100143. [PMID: 24950251 PMCID: PMC4064995 DOI: 10.1371/journal.pone.0100143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting.
Collapse
Affiliation(s)
- Mohssen Hakimi
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan-Peter Grassmann
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Marcel Betsch
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Johannes Schneppendahl
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sebastian Gehrmann
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ahmad-Reza Hakimi
- Department of Oral Surgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Patric Kröpil
- Department of Diagnostic and Interventional Radiology, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Sager
- Animal Research Institute, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Monika Herten
- Department of Orthopaedics, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Michael Wild
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Joachim Windolf
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Pascal Jungbluth
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
12
|
Jungbluth P, Hakimi AR, Grassmann JP, Schneppendahl J, Betsch M, Kröpil P, Thelen S, Sager M, Herten M, Wild M, Windolf J, Hakimi M. The early phase influence of bone marrow concentrate on metaphyseal bone healing. Injury 2013; 44:1285-94. [PMID: 23684350 DOI: 10.1016/j.injury.2013.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/30/2013] [Accepted: 04/14/2013] [Indexed: 02/02/2023]
Abstract
Bone marrow concentrate (BMC) contains high densities of progenitor cells. Therefore, in critical size defects BMC may have the potency to support bone healing. The aim of this study was to investigate the effect of BMC in combination with calcium phosphate granules (CPG) on bone defect healing in a metaphyseal long bone defect in mini-pigs. A metaphyseal critical-size bone defect at the proximal tibia of 24 mini-pigs was filled with CPG combined with BMC, CPG solely (control group) or with an autograft. Radiological and histomorphometrical evaluations after 6 weeks (42 days) showed significantly more bone formation in the BMC group in the central area of the defect zone and the cortical defect zone compared to the CPG group. At the same time the resorption rate of CPG increased significantly in the BMC group. Nevertheless, compared to the BMC group the autograft group showed a significantly higher new bone formation radiologically and histomorphometrically. In BMC the count of mononuclear cells was significantly higher compared to the bone marrow aspirate (3.5-fold). The mesenchymal progenitor cell characteristics of the cells in BMC were confirmed by flow cytometry. Cells from BMC created significantly larger colonies of alkaline phosphatase-positive colony forming units (CFU-ALP) (4.4-fold) compared to cells from bone marrow aspirate. Nevertheless, even in the BMC group complete osseous bridging was only detectable in isolated instances of the bone defects. Within the limitations of this study the BMC+CPG composite promotes bone regeneration in the early phase of bone healing significantly better than the isolated application of CPG. However, the addition of BMC does not lead to a solid fusion of the defect in the early phase of bone healing an still does not represent an equal alternative to autologous bone.
Collapse
Affiliation(s)
- P Jungbluth
- Heinrich Heine University Hospital Duesseldorf, Department of Trauma and Handsurgery, Moorenstr. 5, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zilkens C, Miese F, Jäger M, Bittersohl B, Krauspe R. Magnetic resonance imaging of hip joint cartilage and labrum. Orthop Rev (Pavia) 2011; 3:e9. [PMID: 22053256 PMCID: PMC3206516 DOI: 10.4081/or.2011.e9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022] Open
Abstract
Hip joint instability and impingement are the most common biomechanical risk factors that put the hip joint at risk to develop premature osteoarthritis. Several surgical procedures like periacetabular osteotomy for hip dysplasia or hip arthroscopy or safe surgical hip dislocation for femoroacetabular impingement aim at restoring the hip anatomy. However, the success of joint preserving surgical procedures is limited by the amount of pre-existing cartilage damage. Biochemically sensitive MRI techniques like delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) might help to monitor the effect of surgical or non-surgical procedures in the effort to halt or even reverse joint damage.
Collapse
Affiliation(s)
- Christoph Zilkens
- Department of Orthopaedic Surgery, University Hospital of Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
14
|
Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 2011; 29:173-80. [PMID: 20740672 DOI: 10.1002/jor.21230] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/01/2010] [Indexed: 02/04/2023]
Abstract
Although autologous bone grafting represents an effective tool to induce osteogenic regeneration in local bone defects or pseudarthroses, it is associated with significant donor site morbidity and limited by the amount available for grafting. We investigate the potency of bone marrow aspiration concentrate (BMAC) to augment bone grafting and support bone healing. The functional and radiographic outcome of 39 patients with volumetric bone deficiencies treated with BMAC are presented and evaluated in a prospective clinical trial. A collagen sponge (Col) served as scaffold in 12 patients and a bovine hydroxyapatite (HA) was applied in the other 27 individuals. The minimal follow-up was 6 months. Clinical and radiographic findings were completed by in vitro data. All patients showed new bone formation in radiographs during follow-up. However, two patients underwent revision surgery due to a lack in bone healing. In contrast to the Col group, the postoperative bone formation appeared earlier in the HA group (HA group: 6.8 weeks vs. Col group 13.6 weeks). Complete bone healing was achieved in the HA group after 17.3 weeks compared to 22.4 weeks in the Col group. The average concentration factor of BMAC was 5.2 (SD 1.3). Flow cytometry confirmed the mesenchymal nature of the cells. Cells from BMAC created earlier and larger colonies of forming units fibroblasts (CFU-F) compared to cells from bone marrow aspirate. BMAC combined with HA can reduce the time needed for healing of bone defects when compared to BMAC in combination with collagen sponge.
Collapse
Affiliation(s)
- Marcus Jäger
- Research Laboratory for Regenerative Medicine and Biomaterials, Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstr. 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|