1
|
Lin HL, Fink JB, Li J. The Effects of Inspiratory Flows, Inspiratory Pause, and Suction Catheter on Aerosol Drug Delivery with Vibrating Mesh Nebulizers During Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2024; 37:125-131. [PMID: 38563958 DOI: 10.1089/jamp.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Background: Some experts recommend specific ventilator settings during nebulization for mechanically ventilated patients, such as inspiratory pause, high inspiratory to expiratory ratio, and so on. However, it is unclear whether those settings improve aerosol delivery. Thus, we aimed to evaluate the impact of ventilator settings on aerosol delivery during mechanical ventilation (MV). Methods: Salbutamol (5.0 mg/2.5 mL) was nebulized by a vibrating mesh nebulizer (VMN) in an adult MV model. VMN was placed at the inlet of humidifier and 15 cm away from the Y-piece of the inspiratory limb. Eight scenarios with different ventilator settings were compared with endotracheal tube (ETT) connecting 15 cm from the Y-piece, including tidal volumes of 6-8 mL/kg, respiratory rates of 12-20 breaths/min, inspiratory time of 1.0-2.5 seconds, inspiratory pause of 0-0.3 seconds, and bias flow of 3.5 L/min. In-line suction catheter was utilized in two scenarios. Delivered drug distal to the ETT was collected by a filter, and drug was assayed by an ultraviolet spectrophotometry (276 nm). Results: Compared to the use of inspiratory pause, the inhaled dose without inspiratory pause was either higher or similar across all ventilation settings. Inhaled dose was negatively correlated with inspiratory flow with VMN placed at 15 cm away from the Y-piece (rs = -0.68, p < 0.001) and at the inlet of humidifier (rs = -0.83, p < 0.001). The utilization of in-line suction catheter reduced inhaled dose, regardless of the ventilator settings and nebulizer placements. Conclusions: When VMN was placed at the inlet of humidifier, directly connecting the Y-piece to ETT without a suction catheter improved aerosol delivery. In this configuration, the inhaled dose increased as the inspiratory flow decreased, inspiratory pause had either no or a negative impact on aerosol delivery. The inhaled dose was greater with VMN placed at the inlet of humidifier than 15 cm away the Y-piece.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - James B Fink
- Respiratory Care, Department of Cardiopulmonary Sciences, Rush University, Chicago, Illinois, USA
- Aerogen Pharma Corp, San Mateo, California, USA
| | - Jie Li
- Respiratory Care, Department of Cardiopulmonary Sciences, Rush University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Reilly L, Mac Giolla Eain M, Murphy S, O’Sullivan A, Joyce M, MacLoughlin R. An in vitro study of the effects of respiratory circuit setup and parameters on aerosol delivery during mechanical ventilation. Front Med (Lausanne) 2024; 10:1307301. [PMID: 38327274 PMCID: PMC10847248 DOI: 10.3389/fmed.2023.1307301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Aerosol therapy is often prescribed concurrently during invasive mechanical ventilation (IMV). This study determines the effects of nebuliser position, circuit humidification source, and most importantly, lung health on the delivery of aerosol in simulated adult and paediatric IMV patients. Furthermore, the influence of closed suction catheters on aerosol delivery is also addressed. Methods A vibrating mesh nebuliser was used to deliver Albuterol to simulated adult and paediatric IMV patients with differing states of lung health. Four different nebuliser positions and two types of humidification were analysed. Closed suction catheter mounts, a mainstay in IMV therapy, were incorporated into the circuits. The mean ± SD dose of aerosol (%) was assayed from a filter at the distal end of the endotracheal tube. Results Nebuliser placement and circuit humidification source had no effect on the delivered dose (%) in adults, yet both significantly did in the simulated paediatric patients. The use of closed suction catheter mounts significantly reduced the delivered dose (%) in adults but not in paediatric patients. A simulated healthy lung state generated the largest delivered dose (%), irrespective of nebuliser position in the adult. However, different lung health and nebuliser positions yielded higher delivered doses (%) in paediatrics. Conclusion Lung health and respiratory circuit composition significantly affect aerosol delivery in both adult and paediatric IMV patients. Nebuliser placement and respiratory circuit humidification source do not affect the delivered dose in adult but do in paediatric IMV patients.
Collapse
Affiliation(s)
- Leanne Reilly
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Sarah Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
- School of Pharmacy & Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinty College, Dublin, Ireland
| |
Collapse
|
3
|
Li J, Liu K, Lyu S, Jing G, Dai B, Dhand R, Lin HL, Pelosi P, Berlinski A, Rello J, Torres A, Luyt CE, Michotte JB, Lu Q, Reychler G, Vecellio L, de Andrade AD, Rouby JJ, Fink JB, Ehrmann S. Aerosol therapy in adult critically ill patients: a consensus statement regarding aerosol administration strategies during various modes of respiratory support. Ann Intensive Care 2023; 13:63. [PMID: 37436585 DOI: 10.1186/s13613-023-01147-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Clinical practice of aerosol delivery in conjunction with respiratory support devices for critically ill adult patients remains a topic of controversy due to the complexity of the clinical scenarios and limited clinical evidence. OBJECTIVES To reach a consensus for guiding the clinical practice of aerosol delivery in patients receiving respiratory support (invasive and noninvasive) and identifying areas for future research. METHODS A modified Delphi method was adopted to achieve a consensus on technical aspects of aerosol delivery for adult critically ill patients receiving various forms of respiratory support, including mechanical ventilation, noninvasive ventilation, and high-flow nasal cannula. A thorough search and review of the literature were conducted, and 17 international participants with considerable research involvement and publications on aerosol therapy, comprised a multi-professional panel that evaluated the evidence, reviewed, revised, and voted on recommendations to establish this consensus. RESULTS We present a comprehensive document with 20 statements, reviewing the evidence, efficacy, and safety of delivering inhaled agents to adults needing respiratory support, and providing guidance for healthcare workers. Most recommendations were based on in-vitro or experimental studies (low-level evidence), emphasizing the need for randomized clinical trials. The panel reached a consensus after 3 rounds anonymous questionnaires and 2 online meetings. CONCLUSIONS We offer a multinational expert consensus that provides guidance on the optimal aerosol delivery techniques for patients receiving respiratory support in various real-world clinical scenarios.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA.
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Lyu
- Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Guoqiang Jing
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Ariel Berlinski
- Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Arkansas for Medical Sciences, and Pediatric Aerosol Research Laboratory at Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research in the ICU, Anaesthesia Department, CHU Nimes, Université de Nimes-Montpellier, Nimes, France
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, University of Barcelona, IDIBAPS CIBERES, Icrea, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, and INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland
| | - Qin Lu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, and Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL and Dermatologie, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Jean-Jacques Rouby
- Research Department DMU DREAM and Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Sorbonne University of Paris, Paris, France
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA
- Chief Science Officer, Aerogen Pharma Corp, San Mateo, CA, USA
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, and INSERM, Centre d'étude des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
4
|
Lima CA, Campos SL, Bandeira MP, Leite WS, Brandão DC, Fernandes J, Fink JB, Dornelas de Andrade A. Influence of Mechanical Ventilation Modes on the Efficacy of Nebulized Bronchodilators in the Treatment of Intubated Adult Patients with Obstructive Pulmonary Disease. Pharmaceutics 2023; 15:pharmaceutics15051466. [PMID: 37242708 DOI: 10.3390/pharmaceutics15051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Little has been reported in terms of clinical outcomes to confirm the benefits of nebulized bronchodilators during mechanical ventilation (MV). Electrical Impedance Tomography (EIT) could be a valuable method to elucidate this gap. OBJECTIVE The purpose of this study is to evaluate the impact of nebulized bronchodilators during invasive MV with EIT by comparing three ventilation modes on the overall and regional lung ventilation and aeration in critically ill patients with obstructive pulmonary disease. METHOD A blind clinical trial in which eligible patients underwent nebulization with salbutamol sulfate (5 mg/1 mL) and ipratropium bromide (0.5 mg/2 mL) in the ventilation mode they were receiving. EIT evaluation was performed before and after the intervention. A joint and stratified analysis into ventilation mode groups was performed, with p < 0.05. RESULTS Five of nineteen procedures occurred in controlled MV mode, seven in assisted mode and seven in spontaneous mode. In the intra-group analysis, the nebulization increased total ventilation in controlled (p = 0.04 and ⅆ = 2) and spontaneous (p = 0.01 and ⅆ = 1.5) MV modes. There was an increase in the dependent pulmonary region in assisted mode (p = 0.01 and ⅆ = 0.3) and in spontaneous mode (p = 0.02 and ⅆ = 1.6). There was no difference in the intergroup analysis. CONCLUSIONS Nebulized bronchodilators reduce the aeration of non-dependent pulmonary regions and increase overall lung ventilation but there was no difference between the ventilation modes. As a limitation, it is important to note that the muscular effort in PSV and A/C PCV modes influences the impedance variation, and consequently the aeration and ventilation values. Thus, future studies are needed to evaluate this effort as well as the time on ventilator, time in UCI and other variables.
Collapse
Affiliation(s)
- Cibelle Andrade Lima
- Physiotherapy Depatment, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Shirley Lima Campos
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | | | - Wagner Souza Leite
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Daniella Cunha Brandão
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Juliana Fernandes
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - James B Fink
- Department of Cardiopulmonary Science, Division of Respiratory, CA Rush University Medical Center, Chicago, IL 60612, USA
- Aerogen Pharma, San Mateo, CA 94402, USA
| | | |
Collapse
|
5
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Lin HL, Fink JB, Ge H. Aerosol delivery via invasive ventilation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:588. [PMID: 33987286 DOI: 10.21037/atm-20-5665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In comparison with spontaneously breathing non-intubated subjects, intubated, mechanically ventilated patients encounter various challenges, barriers, and opportunities in receiving medical aerosols. Since the introduction of mechanical ventilation as a part of modern critical care medicine during the middle of the last century, aerosolized drug delivery by jet nebulizers has become a common practice. However, early evidence suggested that aerosol generators differed in their efficacies, and the introduction of newer aerosol technology (metered dose inhalers, ultrasonic nebulizer, vibrating mesh nebulizers, and soft moist inhaler) into the ventilator circuit opened up the possibility of optimizing inhaled aerosol delivery during mechanical ventilation that could meet or exceed the delivery of the same aerosols in spontaneously breathing patients. This narrative review will catalogue the primary variables associated with this process and provide evidence to guide optimal aerosol delivery and dosing during mechanical ventilation. While gaps exist in relation to the appropriate aerosol drug dose, discrepancies in practice, and cost-effectiveness of the administered aerosol drugs, we also present areas for future research and practice. Clinical practice should expand to incorporate these techniques to improve the consistency of drug delivery and provide safer and more effective care for patients.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi.,Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi
| | - James B Fink
- Division of Respiratory Care, Rush University Medical Center, Chicago, IL, USA.,Aerogen Pharma Corp., San Mateo, California, USA
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Harb HS, Saeed H, Madney YM, Abdelrahman MA, Osama H, Esquinas AM, Abdelrahim ME. Update efficacy of aerosol therapy with noninvasive ventilator approach (non-invasive ventilation and nasal high flow). J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Luyt CE, Hékimian G, Bréchot N, Chastre J. Aerosol Therapy for Pneumonia in the Intensive Care Unit. Clin Chest Med 2019; 39:823-836. [PMID: 30390752 DOI: 10.1016/j.ccm.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibiotic aerosolization in patients with ventilator-associated pneumonia (VAP) allows very high concentrations of antimicrobial agents in the respiratory secretions, far more than those achievable using the intravenous route. However, data in critically ill patients with pneumonia are limited. Administration of aerosolized antibiotics might increase the likelihood of clinical resolution, but no significant improvements in important outcomes have been consistently documented. Thus, aerosolized antibiotics should be restricted to the treatment of extensively resistant gram-negative pneumonia. In these cases, the use of a vibrating-mesh nebulizer seems to be more efficient, but specific settings and conditions are required to improve lung delivery.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Guillaume Hékimian
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Nicolas Bréchot
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Jean Chastre
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
9
|
Yang SH, Yang TM, Lin HL, Tsai YH, Fang TP, Wan GH. Size distribution of salbutamol/ipratropium aerosols produced by different nebulizers in the absence and presence of heat and humidification. Pulm Pharmacol Ther 2017; 48:22-27. [PMID: 29054517 DOI: 10.1016/j.pupt.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Few studies have evaluated the size distribution of inhaled and exhaled aerosolized drugs, or the effect of heated humidification on particle size and lung deposition. The present study evaluated these aspects of bronchodilator (salbutamol/ipratropium) delivery using a lung model in the absence and presence of heat and humidification. METHODS We positioned filters to collect and measure the initial drug, inhaled drug, and exhaled drug. Particle size distribution was evaluated using an 8-stage Marple personal cascade impactor with 0.2-μm polycarbonate filters. RESULTS A greater inhaled drug mass was delivered using a vibrating mesh nebulizer (VMN) than by using a small volume nebulizer (SVN), when heated humidifiers were not employed. When heated and humidified medical gas was used, there was no significant difference between the inhaled drug mass delivered by the VMN and that delivered by the SVN. A significantly greater mass of inhaled 1.55-μm drug particles was produced by the VMN than with the SVN, under heated and humidified conditions. However, the mass median aerodynamic diameters (MMADs) of the aerosolized drug produced by the SVN and VMN did not differ significantly under the same conditions. CONCLUSIONS The VMN produced more fine particles of salbutamol/ipratropium, and the drug particle size clearly increased in the presence of heat and humidification.
Collapse
Affiliation(s)
- Ssu-Han Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Respiratory Therapy Team of Chest Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ming Yang
- Department of Pulmonary and Critical Care, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Ling Lin
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Huang Tsai
- Department of Pulmonary and Critical Care, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tien-Pei Fang
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Neurosurgery, Linkuo Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Dhanani J, Fraser JF, Chan HK, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:269. [PMID: 27716346 PMCID: PMC5054555 DOI: 10.1186/s13054-016-1448-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug dosing in critically ill patients is challenging due to the altered drug pharmacokinetics–pharmacodynamics associated with systemic therapies. For many drug therapies, there is potential to use the respiratory system as an alternative route for drug delivery. Aerosol drug delivery can provide many advantages over conventional therapy. Given that respiratory diseases are the commonest causes of critical illness, use of aerosol therapy to provide high local drug concentrations with minimal systemic side effects makes this route an attractive option. To date, limited evidence has restricted its wider application. The efficacy of aerosol drug therapy depends on drug-related factors (particle size, molecular weight), device factors, patient-related factors (airway anatomy, inhalation patterns) and mechanical ventilation-related factors (humidification, airway). This review identifies the relevant factors which require attention for optimization of aerosol drug delivery that can achieve better drug concentrations at the target sites and potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.
| | - John F Fraser
- Department of Intensive Care Medicine, The Prince Charles Hospital, Brisbane, Australia.,Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jordi Rello
- Critical Care Department, Hospital Vall d'Hebron, Barcelona, Spain.,CIBERES, Vall d'Hebron Institut of Research, Barcelona, Spain.,Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jeremy Cohen
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.,Pharmacy Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Maccari JG, Teixeira C, Gazzana MB, Savi A, Dexheimer-Neto FL, Knorst MM. Inhalation therapy in mechanical ventilation. J Bras Pneumol 2015; 41:467-72. [PMID: 26578139 PMCID: PMC4635094 DOI: 10.1590/s1806-37132015000000035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/29/2015] [Indexed: 12/04/2022] Open
Abstract
Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients.
Collapse
Affiliation(s)
| | - Cassiano Teixeira
- Unidade de Terapia Intensiva Adulto, Hospital Moinhos de Vento, Porto Alegre (RS) Brasil
| | | | - Augusto Savi
- Unidade de Terapia Intensiva Adulto, Hospital Moinhos de Vento, Porto Alegre (RS) Brasil
| | | | - Marli Maria Knorst
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS) Brasil
| |
Collapse
|
12
|
Linakis MW, Roberts JK, Lala AC, Spigarelli MG, Medlicott NJ, Reith DM, Ward RM, Sherwin CMT. Challenges Associated with Route of Administration in Neonatal Drug Delivery. Clin Pharmacokinet 2015; 55:185-96. [DOI: 10.1007/s40262-015-0313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Dugernier J, Wittebole X, Roeseler J, Michotte JB, Sottiaux T, Dugernier T, Laterre PF, Reychler G. Influence of inspiratory flow pattern and nebulizer position on aerosol delivery with a vibrating-mesh nebulizer during invasive mechanical ventilation: an in vitro analysis. J Aerosol Med Pulm Drug Deliv 2014; 28:229-36. [PMID: 25393556 DOI: 10.1089/jamp.2014.1131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Aerosol delivery during invasive mechanical ventilation (IMV) depends on nebulizer type, placement of the nebulizer and ventilator settings. The purpose of this study was to determine the influence of two inspiratory flow patterns on amikacin delivery with a vibrating-mesh nebulizer placed at different positions on an adult lung model of IMV equipped with a proximal flow sensor (PFS). METHODS IMV was simulated using a ventilator connected to a lung model through an 8-mm inner-diameter endotracheal tube. The impact of a decelerating and a constant flow pattern on aerosol delivery was evaluated in volume-controlled mode (tidal volume 500 mL, 20 breaths/min, inspiratory time of 1 sec, bias flow of 10 L/min). An amikacin solution (250 mg/3 mL) was nebulized with Aeroneb Solo(®) placed at five positions on the ventilator circuit equipped with a PFS: connected to the endotracheal tube (A), to the Y-piece (B), placed at 15 cm (C) and 45 cm upstream of the Y-piece (D), and placed at 15 cm of the inspiratory outlet of the ventilator (E). The four last positions were also tested without PFS. Deposited doses of amikacin were measured using the gravimetric residual method. RESULTS Amikacin delivery was significantly reduced with a decelerating inspiratory flow pattern compared to a constant flow (p<0.05). With a constant inspiratory flow pattern, connecting the nebulizer to the endotracheal tube enabled similar deposited doses than these obtained when connecting the nebulizer close to the ventilator. The PFS reduced deposited doses only when the nebulizer was connected to the Y-piece with both flow patterns or placed at 15 cm of the Y-piece with a constant inspiratory flow (p<0.01). CONCLUSIONS Using similar tidal volume and inspiratory time, a constant flow pattern (30 L/min) delivers a higher amount of amikacin through an endotracheal tube compared to a decelerating inspiratory flow pattern (peak inspiratory flow around 60 L/min). The optimal nebulizer position depends on the inspiratory flow pattern and the presence of a PFS.
Collapse
Affiliation(s)
| | - Xavier Wittebole
- 1Intensive Care Unit, University Hospital Saint-Luc, Brussels, Belgium
| | - Jean Roeseler
- 1Intensive Care Unit, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Thierry Sottiaux
- 4Intensive Care Unit, Clinique Notre Dame de Grâce, Gosselies, Belgium
| | | | | | | |
Collapse
|
14
|
Pornputtapitak W, El-Gendy N, Mermis J, O'Brien-Ladner A, Berkland C. NanoCluster budesonide formulations enable efficient drug delivery driven by mechanical ventilation. Int J Pharm 2013; 462:19-28. [PMID: 24374223 DOI: 10.1016/j.ijpharm.2013.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Agglomerates of budesonide nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. These engineered powders were delivered via a Monodose inhaler or a novel device, entrained through commercial endotracheal tubes, and analyzed by cascade impaction. Inspiration flow rates and other parameters such as inspiration patterns and inspiration volumes were controlled by a ventilator. NanoCluster budesonide (NC-Bud) formulations had a higher efficiency of aerosol delivery compared to micronized budesonide with NC-Bud showing a much higher percent emitted fraction (%EF). Different inspiration patterns (sine, square, and ramp) did not affect the powder performance of NC-Bud when applied through a 5.0 mm endotracheal tube. The aerosolization of NC-Bud also did not change with the inspiration volume (1.5-2.5 L) nor with the inspiration flow rate (20-40 L/min) suggesting fast emptying times for budesonide capsules. The %EF of NC-Bud was higher at 51% relative humidity compared to 82% RH. The novel device and the Monodose showed the same efficiency of drug delivery but the novel device fit directly to a ventilator and endotracheal tubing connections. The new device combined with NanoCluster formulation technology allowed convenient and efficient drug delivery through endotracheal tubes.
Collapse
Affiliation(s)
| | - Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-suef University, Egypt
| | - Joel Mermis
- Department of Medicine Division of Pulmonary Diseases and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amy O'Brien-Ladner
- Department of Medicine Division of Pulmonary Diseases and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
15
|
Luyt CE, Bréchot N, Combes A, Trouillet JL, Chastre J. Delivering antibiotics to the lungs of patients with ventilator-associated pneumonia: an update. Expert Rev Anti Infect Ther 2013; 11:511-21. [PMID: 23627857 DOI: 10.1586/eri.13.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ventilator-associated pneumonia is a serious hospital-acquired infection, with 20-70% crude mortality and 10-40% estimated attributable mortality. Insufficient antibiotic concentrations at the infection site when these drugs are given intravenously may lead to poor outcomes, particularly when difficult-to-treat pathogens are responsible; for example, Pseudomonas aeruginosa, extended spectrum beta lactamase-producing Gram-negative bacilli, Acinetobacter spp. and/or methicillin-resistant Staphylococcus aureus. Direct drug delivery to the infection site via aerosolization combined with intravenous administration achieves concentrations exceeding MICs of the pathogens, even those with impaired susceptibility. Experimental and recent clinical results demonstrated our markedly improved ability to deliver aerosolized antibiotics to the lung with new-generation devices, for example, vibrating-mesh nebulizers. Convincing clinical data from a large randomized trial are still lacking to support the routine administration of aerosolized antibiotics to treat ventilator-associated pneumonia, even though some small-randomized trials' observations are encouraging.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Rogers L, Reibman J. Pharmacologic approaches to life-threatening asthma. Ther Adv Respir Dis 2011; 5:397-408. [PMID: 21490118 DOI: 10.1177/1753465811398721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Following a peak in asthma mortality in the late 1980s and early 1990s, we have been fortunate to see a substantial decrease in asthma deaths in recent years. Although most asthma deaths occur outside the hospital, near-fatal events are commonplace, with anywhere from 2-20% of patients with acute asthma admitted to intensive care, and 2-4% intubated for respiratory failure. Standard therapies for acute severe and near-fatal asthma include administration of systemic corticosteroids, and frequent or continuous inhaled beta agonists. Controversy remains regarding the optimal therapy of those who fail to respond to these initial treatments, those who remain at risk of acute respiratory failure, and patients requiring mechanical ventilation. There remain significant gaps in our knowledge regarding relative benefits of intravenous versus oral corticosteroids, intermittent versus continuous beta agonists, and the role of various adjunctive treatments including intravenous magnesium, systemic beta agonists, aminophylline, and helium-oxygen mixtures. Using models and radiolabeled aerosols, there is a greater understanding regarding effective administration of inhaled beta-agonists in ventilated patients. There is limited available evidence for treatment of near-fatal asthma, a fact reflected by the significant variability in asthma critical care practice. Much of the data guiding treatment in this setting has been generalized from studies of acute asthma in the ED and from general populations of hospitalized patients with acute asthma. This review will focus on pharmacologic approaches to life-threatening asthma by reviewing current guideline recommendations, reviewing the scientific basis of the guidelines, and highlighting gaps in our knowledge in treatment of refractory acute or near-fatal asthma.
Collapse
Affiliation(s)
- Linda Rogers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
18
|
Mazela J, Polin RA. Aerosol delivery to ventilated newborn infants: historical challenges and new directions. Eur J Pediatr 2011; 170:433-44. [PMID: 20878336 PMCID: PMC3059826 DOI: 10.1007/s00431-010-1292-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
There are several aerosolized drugs which have been used in the treatment of neonatal respiratory illnesses, such as bronchodilators, diuretics, and surfactants. Preclinical in vitro and in vivo studies identified a number of variables that affect aerosol efficiency, including particle size, aerosol flows, nebulizer choice, and placement. Nevertheless, an optimized aerosol drug delivery system for mechanically ventilated infants still does not exist. Increasing interest in this form of drug delivery requires more controlled and focused research of drug/device combinations appropriate for the neonatal population. In the present article, we review the research that has been conducted thus far and discuss the next steps in developing the optimal aerosol delivery system for use in mechanically ventilated neonates.
Collapse
Affiliation(s)
- Jan Mazela
- Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Richard A. Polin
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY USA
| |
Collapse
|
19
|
Afonso AS, Verhamme KM, Stricker BH, Sturkenboom MC, Brusselle GG. Inhaled anticholinergic drugs and risk of acute urinary retention. BJU Int 2010; 107:1265-72. [DOI: 10.1111/j.1464-410x.2010.09600.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Goetz SM, Dahmani C, Rudolph C, Weyh T. First Theoretic Analysis of Magnetic Drug Targeting in the Lung. IEEE Trans Biomed Eng 2010; 57:2115-21. [DOI: 10.1109/tbme.2010.2051032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ari A, Fink JB. Factors affecting bronchodilator delivery in mechanically ventilated adults. Nurs Crit Care 2010; 15:192-203. [DOI: 10.1111/j.1478-5153.2010.00395.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Dhand R, Guntur VP. How best to deliver aerosol medications to mechanically ventilated patients. Clin Chest Med 2008; 29:277-96, vi. [PMID: 18440437 DOI: 10.1016/j.ccm.2008.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pressurized metered-dose inhalers (pMDIs) and nebulizers are employed routinely for aerosol delivery to ventilator-supported patients, but the ventilator circuit and artificial airway previously were thought to be major barriers to effective delivery of aerosols to patients receiving mechanical ventilation. In the past two decades, several investigators have shown that careful attention to many factors, such as the position of the patient, the type of aerosol generator and its configuration in the ventilator circuit, aerosol particle size, artificial airway, conditions in the ventilator circuit, and ventilatory parameters, is necessary to optimize aerosol delivery during mechanical ventilation. The best techniques for aerosol delivery during noninvasive positive-pressure ventilation are not well established as yet, and the efficiency of aerosol delivery in this setting is lower than that during invasive mechanical ventilation. The most efficient methods of using the newer hydrofluoroalkane-pMDIs and vibrating mesh nebulizers in ventilator-supported patients also require further evaluation. When optimal techniques of administration are employed, the efficiency of aerosolized drug delivery in mechanically ventilated patients is comparable to that achieved in ambulatory patients.
Collapse
Affiliation(s)
- Rajiv Dhand
- Division of Pulmonary, Critical Care, and Environmental Medicine, University of Missouri, MA-421 Health Sciences Center, 1 Hospital Drive, Columbia, MO 65212, USA.
| | | |
Collapse
|
23
|
Dhand R. Aerosol delivery during mechanical ventilation: from basic techniques to new devices. J Aerosol Med Pulm Drug Deliv 2008; 21:45-60. [PMID: 18518831 DOI: 10.1089/jamp.2007.0663] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pressurized metered-dose inhalers (pMDIs) and nebulizers are routinely employed for aerosol delivery in mechanically ventilated patients. A significant proportion of the aerosol deposits in the ventilator circuit and artificial airway, thereby reducing the inhaled drug mass. Factors influencing aerosol delivery during mechanical ventilation differ from those in spontaneously breathing patients. The English language literature on aerosol delivery during mechanical ventilation was reviewed. Marked variations in the efficiency of drug delivery with pMDIs and nebulizers occur due to differences in the technique of administration. Careful attention to five factors, viz., the aerosol generator, aerosol particle size, conditions in the ventilator circuit, artificial airway, and ventilator parameters, is necessary to optimize aerosol delivery during mechanical ventilation. Factors influencing drug delivery during NPPV are not well understood, and the efficiency of aerosol delivery in this setting is lower than that during invasive mechanical ventilaiton. With an optimal technique of administration the efficiency of aerosol delivery during mechanical ventilation is similar to that achieved during spontaneous breathing. Further research is needed to optimize aerosol delivery during NPPV.
Collapse
Affiliation(s)
- Rajiv Dhand
- Division of Pulmonary, Critical Care, and Environmental Medicine, Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA.
| |
Collapse
|
24
|
Guerin C, Fassier T, Bayle F, Lemasson S, Richard JC. Inhaled bronchodilator administration during mechanical ventilation: how to optimize it, and for which clinical benefit? J Aerosol Med Pulm Drug Deliv 2008; 21:85-96. [PMID: 18518835 DOI: 10.1089/jamp.2007.0630] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bronchodilators are frequently used in ICU patients, and are the most common medications administered by inhalation during mechanical ventilation. The amount of bronchodilator that deposits at its site of action depends on the amount of drug, inhaled mass, deposited mass, and particle size distribution. Mechanical ventilation challenges both inhaled mass and lung deposition by specific features, such as a ventilatory circuit, an endotracheal tube, and ventilator settings. Comprehensive in vitro studies have shown that an endotracheal tube is not as significant a barrier for the drug to travel as anticipated. Key variables of drug deposition are attachments of the inhalation device in the inspiratory line 10 to 30 cm to the endotracheal tube, use of chamber with metered-dose inhaler, dry air, high tidal volume, low respiratory frequency, and low inspiratory flow, which can increase the drug deposition. In vivo studies showed that a reduction by roughly 15% of the respiratory resistance was achieved with inhaled bronchodilators during invasive mechanical ventilation. The role of ventilatory settings is not as clear in vivo, and primary factors for optimal delivery and physiologic effects were medication dose and device location. Nebulizers and pressurized metered-dose inhalers can equally achieve physiologic end points. The effects of bronchodilators should be carefully evaluated, which can easily be done with the interrupter technique. With the non-invasive ventilation, the data regarding drug delivery and physiologic effects are still limited. With the bilevel ventilators the inhalation device should be located between the leak port and face mask. Further studies should investigate the effects of inhaled bronchodilators on patient outcome and methods to optimize delivery of inhaled bronchodilators during non-invasive ventilation.
Collapse
|
25
|
|
26
|
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss the various factors that influence aerosol delivery in mechanically ventilated patients and clarify optimal techniques for aerosol administration in this patient population. Clinical use of various inhaled therapies in patients receiving invasive and noninvasive mechanical ventilation is also discussed. RECENT FINDINGS With optimal techniques for using pressurized metered-dose inhalers and nebulizers in ventilator circuits, the efficiency of inhaled drug delivery in mechanically ventilated patients is comparable to that in ambulatory patients. Techniques for enhancing inhaled drug delivery during noninvasive positive pressure ventilation are also being investigated. SUMMARY Pressurized metered-dose inhalers of bronchodilator and corticosteroid aerosols are more efficient and convenient to use than nebulizers for routine therapy in ventilated patients. Nebulizers are, however, more versatile and are employed to generate aerosols of bronchodilators, corticosteroids, antibiotics, prostaglandins, surfactant, and mucolytic agents. Factors influencing drug delivery during noninvasive positive pressure ventilation are not fully understood as yet, and further work is needed to enhance drug delivery in this setting. Improvements in drug formulations and the design and efficiency of aerosol generating devices have led to increasing application of inhaled therapies in mechanically ventilated patients.
Collapse
Affiliation(s)
- Rajiv Dhand
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Internal Medicine, University of Missouri, Columbia, Missouri 65212, USA.
| |
Collapse
|
27
|
Malliotakis P, Mouloudi E, Prinianakis G, Kondili E, Georgopoulos D. Influence of respiratory efforts on b2-agonist induced bronchodilation in mechanically ventilated COPD patients: A prospective clinical study. Respir Med 2007; 101:300-7. [PMID: 16774821 DOI: 10.1016/j.rmed.2006.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/22/2006] [Accepted: 05/02/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Several in vitro studies have shown that at similar tidal volume (VT), bronchodilator delivery to target sites is significantly lower during controlled mechanical ventilation (CMV) than that during simulated spontaneous breathing. However, the influence of active respiratory efforts on the magnitude of b2-agonist induced bronchodilation in mechanically ventilated patients has not been examined. OBJECTIVE To examine the influence of controlled and assisted modes of ventilatory support on the bronchodilative effect induced by b2-agonists administered with a metered dose inhaler (MDI) and a spacer device in a homogeneous group of mechanically ventilated patients with acute exacerbation of chronic obstructive pulmonary disease (COPD). METHODS Prospective clinical study. Ten mechanically ventilated patients with acute exacerbation of COPD were prospectively randomized to receive 4 puffs of salbutamol (S, 100 micro g/puff) either with volume-controlled (VC) or pressure-support (PS) ventilation. On PS the pressure level was such that VT was comparable between ventilatory modes. After a 6-h washout period, patients were crossed-over to receive the drug by the alternative mode of ventilation. Static and dynamic airway pressures, minimum (R(int)) and maximum (R(rs)) inspiratory resistance, the difference between R(rs) and R(int) (DeltaR), end-inspiratory static compliance of the respiratory system (C(rs)), intrinsic positive end-expiratory pressure (PEEP(i)) and heart rate (HR) were measured before and at 15, 30, 60, 120, 180 and 240 min after S administration. RESULTS S caused a significant decrease in dynamic and static airway pressures, PEEP(i), R(int) and R(rs). These changes were not influenced by the ventilatory mode and were evident at 15, 30, 60 and 120 min after S. HR, C(rs) and DeltaR did not change after S administration. CONCLUSIONS Considering the use of propofol with its presumed bronchodilative properties as a shortcoming of our study, it is concluded that the magnitude of bronchodilation induced by salbutamol delivered by an MDI and a spacer device in mechanically ventilated COPD patients is not affected by the presence or absence of active respiratory efforts.
Collapse
Affiliation(s)
- P Malliotakis
- Intensive Care Medicine Department, University Hospital of Heraklion, University of Crete, Heraklion, 71110 Crete, Greece
| | | | | | | | | |
Collapse
|
28
|
Oddo M, Feihl F, Schaller MD, Perret C. Management of mechanical ventilation in acute severe asthma: practical aspects. Intensive Care Med 2006; 32:501-10. [PMID: 16552615 DOI: 10.1007/s00134-005-0045-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Acute severe asthma induces marked alterations in respiratory mechanics, characterized by a critical limitation of expiratory flow and a heterogeneous and reversible increase in airway resistance, resulting in premature airway closure, lung, and chest wall dynamic hyperinflation and high intrinsic PEEP. DISCUSSION These abnormalities increase the work of breathing and can lead to respiratory muscle fatigue and life-threatening respiratory failure, in which case mechanical ventilation is life-saving. When instituting mechanical ventilation in this setting, a major concern is the risk of worsening lung hyperinflation (thereby provoking barotrauma) and inducing or aggravating hemodynamic instability. Guidelines for mechanical ventilation in acute severe asthma are not supported by strong clinical evidence. Controlled hypoventilation with permissive hypercapnia may reduce morbidity and mortality compared to conventional normocapnic ventilation. Profound pathological alterations in respiratory mechanics occur during acute severe asthma, which clinicians should keep in mind when caring for ventilated asthmatics. CONCLUSION We focus on the practical management of controlled hypoventilation. Particular attention must be paid to ventilator settings, monitoring of lung hyperinflation, the role of extrinsic PEEP, and administering inhaled bronchodilators. We also underline the importance of deep sedation with respiratory drive-suppressing opioids to maintain patient-ventilator synchrony while avoiding as much as can be muscle paralysis and the ensuing risk of myopathy. Finally, the role of noninvasive positive pressure ventilation for the treatment of respiratory failure during severe asthma is discussed.
Collapse
Affiliation(s)
- Mauro Oddo
- Division of Critical Care, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 11, 1011, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
29
|
Vecellio L, Guérin C, Grimbert D, De Monte M, Diot P. In vitro study and semiempirical model for aerosol delivery control during mechanical ventilation. Intensive Care Med 2005; 31:871-6. [PMID: 15803302 DOI: 10.1007/s00134-005-2594-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The object of this study was to evaluate in vitro the influence of various ventilatory parameters on the delivery of synchronized nebulization of terbutaline during mechanical ventilation and to determine a semiempirical model to control the quantity of aerosol delivered into the patient's lung. An ATOMISOR NL9 M jet nebulizer (La Diffusion Technique Francaise, France) was filled with terbutaline (Bricanyl, Astra-Zeneca, Sweden) and connected to the inspiratory line of a Horus ventilator (Taema, France). Nebulization was synchronized with the inspiratory phase. We assessed at the end of the endotracheal tube the quantity of terbutaline (terbutaline mass output) and the volume median diameter (VMD) by diffraction-laser method. There was a negative correlation between terbutaline mass output and inspiratory air flow ( r =-0.95, p <0.0001) and between VMD and inspiratory air flow ( r =-0.96, p <0.0001). Moreover, positive end-expiratory pressure levels between 0 cm and 8 cm of water did not significantly change the terbutaline output mass ( p =0.22). Total nebulization time and terbutaline mass output calculated by the mathematical model showed good agreement with experimental data. In conclusion, our semiempirical model allows calculation of the duration of the nebulization required to deliver a given mass of terbutaline into patient lungs.
Collapse
Affiliation(s)
- Laurent Vecellio
- INSERM U-618 IFR 135, Université François-Rabelais, 37000 Tours, France.
| | | | | | | | | |
Collapse
|
30
|
Abraham E, Andrews P, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pinsky M, Radermacher P, Ranieri M, Richard C, Tasker R, Vallet B. Year in review in Intensive Care Medicine-2003. Part 1: Respiratory failure, infection and sepsis. Intensive Care Med 2004; 30:1017-31. [PMID: 15170528 DOI: 10.1007/s00134-004-2321-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2004] [Indexed: 11/25/2022]
Affiliation(s)
- Edward Abraham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Dhand R. Maximizing aerosol delivery during mechanical ventilation: go with the flow and go slow. Intensive Care Med 2003; 29:1041-2. [PMID: 12918517 DOI: 10.1007/s00134-003-1791-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|