1
|
Nabian M, Narusawa U. Quasi-static pulmonary P–V curves of patients with ARDS, Part I: Characterization. Respir Physiol Neurobiol 2018; 248:36-42. [DOI: 10.1016/j.resp.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023]
|
2
|
Kastis GA, Toumpanakis D, Loverdos K, Anaplioti A, Samartzis A, Argyriou P, Loudos G, Karavana V, Tzouda V, Datseris I, Rontogianni D, Roussos C, Theocharis SE, Vassilakopoulos T. Dose- and time-dependent effects of lipopolysaccharide on technetium-99-m-labeled diethylene-triamine pentaacetatic acid clearance, respiratory system mechanics and pulmonary inflammation. Exp Biol Med (Maywood) 2013; 238:209-22. [PMID: 23576803 DOI: 10.1258/ebm.2012.012313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intratracheal administration of lipopolysaccharide (LPS) in animals is a commonly used model of acute lung injury, characterized by increased alveolar-capillary membrane permeability causing protein-rich edema, inflammation, deterioration of lung mechanical function and impaired gas exchange. Technetium-99-m-labeled diethylene-triamine pentaacetatic acid ((99m)Tc-DTPA) scintigraphy is a non-invasive technique to assess lung epithelial permeability. We hypothesize that the longer the exposure and the higher the dose of LPS the greater the derangement of the various indices of lung injury. After 3, 6 and 24 h of 5 or 40 μg LPS intratracheally administration, (99m)Tc-DTPA was instilled in the lung. Images were acquired for 90 min with a γ-camera and the radiotracer clearance was estimated. In another subgroup, the mechanical properties of the respiratory system were estimated with the forced oscillation technique and static pressure-volume curves, 4.5, 7.5 and 25.5 h post-LPS (iso-times with the end of (99m)Tc-DTPA scintigraphy). Bronchoalveolar lavage (BAL) was performed and a lung injury score was estimated by histology. Lung myeloperoxidase (MPO) activity was measured. (99m)Tc-DTPA clearance increased in all LPS challenged groups compared with control. DTPA clearance presented a U-shape time course at the lower dose, while LPS had a declining effect over time at the larger dose. At 7.5 and 25.5 h post-LPS, tissue elasticity was increased and static compliance decreased at both doses. Total protein in the BAL fluid increased at both doses only at 4.5 h Total lung injury score and MPO activity were elevated in all LPS-treated groups. There is differential time- and dose-dependency of the various indices of lung injury after intratracheally LPS instillation in rats.
Collapse
Affiliation(s)
- George A Kastis
- Department of Critical Care and Pulmonary Services, G.P. Livanos, M. Simou and Experimental Surgery Laboratories, University of Athens, Medical School, Evangelismos Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bitzén U, Niklason L, Göransson I, Jonson B. Measurement and mathematical modelling of elastic and resistive lung mechanical properties studied at sinusoidal expiratory flow. Clin Physiol Funct Imaging 2010; 30:439-46. [PMID: 20726995 DOI: 10.1111/j.1475-097x.2010.00963.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elastic pressure/volume (P(el) /V) and elastic pressure/resistance (P(el) /R) diagrams reflect parenchymal and bronchial properties, respectively. The objective was to develop a method for determination and mathematical characterization of P(el) /V and P(el) /R relationships, simultaneously studied at sinusoidal flow-modulated vital capacity expirations in a body plethysmograph. Analysis was carried out by iterative parameter estimation based on a composite mathematical model describing a three-segment P(el) /V curve and a hyperbolic P(el) /R curve. The hypothesis was tested that the sigmoid P(el) /V curve is non-symmetric. Thirty healthy subjects were studied. The hypothesis of a non-symmetric P(el) /V curve was verified. Its upper volume asymptote was nearly equal to total lung capacity (TLC), indicating lung stiffness increasing at high lung volume as the main factor limiting TLC at health. The asymptotic minimal resistance of the hyperbolic P(el) /R relationship reflected lung size. A detailed description of both P(el) /V and P(el) /R relationships was simultaneously derived from sinusoidal flow-modulated vital capacity expirations. The nature of the P(el) /V curve merits the use of a non-symmetric P(el) /V model.
Collapse
Affiliation(s)
- Ulrika Bitzén
- Department of Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.
| | | | | | | |
Collapse
|
4
|
Kransler KM, McGarrigle BP, Swartz DD, Olson JR. Lung Development in the Holtzman Rat is Adversely Affected by Gestational Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicol Sci 2008; 107:498-511. [DOI: 10.1093/toxsci/kfn235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Amini R, Barnes TA, Savran A, Narusawa U. Respiratory System Model for Quasistatic Pulmonary Pressure-Volume (P-V) Curve: Generalized P-V Curve Analyses. J Biomech Eng 2008; 130:044501. [DOI: 10.1115/1.2913345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A normalized P-V curve is proposed for quantitative comparisons of quasistatic P-V curves from different sources, including data from different investigators, airway pressure-volume curves versus transpulmonary pressure-volume curves, normal versus injured respiratory system, and animal tests versus clinical data. Similarities and differences among five different data groups we analyzed are shown to be quantified through the nondimensional pressure range of an individual data set, combined with the magnitudes of two nondimensional parameters of the inflation limb, derived from a respiratory system model previously reported.
Collapse
Affiliation(s)
- R. Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| | - T. A. Barnes
- Department of Cardiopulmonary and Exercise Sciences, Northeastern University, Boston, MA 02115
| | - A. Savran
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| | - U. Narusawa
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med 2008; 34:2019-25. [PMID: 18575846 DOI: 10.1007/s00134-008-1167-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess the hysteresis of the pressure-volume curve (PV curve) as to estimate, easily and at the bedside, the recruitability of the lung in ARDS patients. DESIGN Prospective study. SETTING Twelve medico-surgical ICU beds of a general hospital. PATIENTS Twenty-six patients within the first 24 h from meeting ARDS criteria. INTERVENTION A Quasi-static inflation and deflation PV curve from 0 to 40 cmH(2)O and a 40 cmH(2)O recruitment maneuver (RM) maintained for 10 s were successively done with an interval of 30 min in between. RECORDINGS AND CALCULATION: Hysteresis of the PV curve (H(PV)) was calculated as the ratio of the area enclosed by the pressure volume loop divided by the predicted body weight (PBW). The volume increase during the RM (V(RM)) was measured by integration of the flow required to maintain the pressure at 40 cmH(2)O and divided by PBW, as an estimation of the volume recruited during the RM. RESULTS A positive linear correlation was found between H(PV) and V(RM) (r = 0.81, P < 0.0001). CONCLUSIONS The results suggest using the hysteresis of the PV curve to assess the recruitability of the lung.
Collapse
|
7
|
Amini R, Narusawa U. Respiratory System Model for Quasistatic Pulmonary Pressure-Volume (P-V) Curve: Inflation-Deflation Loop Analyses. J Biomech Eng 2008; 130:031020. [DOI: 10.1115/1.2913343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.
Collapse
Affiliation(s)
- R. Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| | - U. Narusawa
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
8
|
Albaiceta GM, Garcia E, Taboada F. Comparative study of four sigmoid models of pressure-volume curve in acute lung injury. Biomed Eng Online 2007; 6:7. [PMID: 17300715 PMCID: PMC1802870 DOI: 10.1186/1475-925x-6-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/14/2007] [Indexed: 11/25/2022] Open
Abstract
Background The pressure-volume curve of the respiratory system is a tool to monitor and set mechanical ventilation in acute lung injury. Mathematical models of the static pressure-volume curve of the respiratory system have been proposed to overcome the inter- and intra-observer variability derived from eye-fitting. However, different models have not been compared. Methods The goodness-of-fit and the values of derived parameters (upper asymptote, maximum compliance and points of maximum curvature) in four sigmoid models were compared, using pressure-volume data from 30 mechanically ventilated patients during the early phase of acute lung injury. Results All models showed an excellent goodness-of-fit (R2 always above 0.92). There were significant differences between the models in the parameters derived from the inspiratory limb, but not in those derived from the expiratory limb of the curve. The within-case standard deviations of the pressures at the points of maximum curvature ranged from 2.33 to 6.08 cmH2O. Conclusion There are substantial variabilities in relevant parameters obtained from the four different models of the static pressure-volume curve of the respiratory system.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Intensive Care Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Esteban Garcia
- Intensive Care Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Francisco Taboada
- Intensive Care Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Zhao Y, Rees SE, Kjaergaard S, Smith BW, Larsson A, Andreassen S. An automated method for measuring static pressure–volume curves of the respiratory system and its application in healthy lungs and after lung damage by oleic acid infusion. Physiol Meas 2007; 28:235-47. [PMID: 17322589 DOI: 10.1088/0967-3334/28/3/001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Elastic pressure/volume (PV) curves of the respiratory system have attracted increasing interest, because they may be helpful to optimize ventilator settings in patients undergoing mechanical ventilation. Clinically applicable methods need to be fast, use routinely available equipment, draw the inspiratory and expiratory PV curve limbs, separate the resistive and viscoelastic properties of the respiratory system from the elastic properties, and provide reproducible measurements. This paper presents a computer-controlled method for rapid measurements of static PV curves using a long inflation-deflation with pauses, and its evaluation in six pigs before and after lung damage caused by oleic acid. The method is fast, i.e. 20.5 +/- 1.9 s (mean +/- SD) in healthy lungs and 17.7 +/- 4.1 s in diseased lungs, this including inspiratory and expiratory pauses of 1.1 s duration. In addition the only equipment used was a clinical ventilator and a PC. For healthy and damaged lungs expiratory PV curve limbs were very reproducible and were at higher volume than the inspiratory limbs, indicating hysteresis. For damaged lungs inspiratory PV limbs were reproducible. For healthy lungs the inspiratory limbs were reproducible but only after the first inflation-deflation. It is possible that during the first inflation alveoli are recruited which are not derecruited on deflation, shifting the inspiratory limb of the PV curve. The paused long inflation-deflation technique provides a quick, automated measurement of static PV curves on both inspiratory and expiratory limbs using routinely available equipment in the intensive care unit.
Collapse
Affiliation(s)
- Y Zhao
- Center for Model-Based Medical Decision Support, Institute for Health Science and Technology, Aalborg University, Niels Jernes Vej 14, 4-311, Aalborg East, Denmark
| | | | | | | | | | | |
Collapse
|
10
|
Syring RS, Otto CM, Spivack RE, Markstaller K, Baumgardner JE. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J Appl Physiol (1985) 2006; 102:331-9. [PMID: 16959915 DOI: 10.1152/japplphysiol.00002.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.
Collapse
Affiliation(s)
- Rebecca S Syring
- Department of Clinical Studies, Section of Critical Care, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
11
|
Bayle F, Guérin C, Debord S, Badet M, Lemasson S, Poupelin JC, Richard JC. Assessment of airway closure from deflation lung volume–pressure curve: sigmoidal equation revisited. Intensive Care Med 2006; 32:894-8. [PMID: 16601961 DOI: 10.1007/s00134-006-0160-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 03/14/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess a sigmoidal equation for describing airway closure. DESIGN Experimental study. SETTING University laboratory. PARTICIPANTS Eight piglets mechanically ventilated on zero end-expiratory pressure (ZEEP). INTERVENTIONS Control and lung saline lavage. MEASUREMENTS AND RESULTS Lungs were inflated up to transpulmonary pressure of 30 cmH(2)O at constant flow (0.12l s(-1)) then deflated at the same flow rate up to the point at which oesophageal pressure was constant, which was assumed to represent complete airway closure. The deflation volume-transpulmonary pressure curve was fitted to: (1) a sigmoidal equation focusing on inflexion point and pressure at maximal compliance increase and (2) an exponential equation above an inflexion point determined by eyeballing. Data deviate from the exponential equation at the point of airway closure onset. The zero-volume intercept was determined. Complete airway closure was reached at -8.3+/-3.5cmH(2)O in control conditions and at -1.3+/-3.7 cmH(2)O after lavage (p < 0.05). Between control and lavage, onset of airway closure was 3.0+/-1.9 vs. 6.0+/-2.8 cmH(2)O (p <0.05), inflexion point 3.2+/-1.8 vs. 7.7+/-2.6 cmH(2)O (p <0.001), pressure at maximal compliance increase -1.9+/-0.7 vs. -0.03+/-2.1cmH(2)O (p <0.05) and zero-volume intercept -1.5+/-1.4 vs. 0.3+/-2.3cmH(2)O (p <0.05). CONCLUSIONS During mechanical ventilation airways stay open and close around ZEEP in control but are closed above ZEEP after lavage. Inflexion point might reflect onset of airways closure in control. Pressure at maximal compliance increase was not a marker of complete airways closure. In control and lavage, pressure at maximal compliance increase and zero-volume intercept were reasonably equivalent.
Collapse
Affiliation(s)
- Frédérique Bayle
- Hôpital de la Croix-Rousse, Service de Réanimation Médicale et d'Assistance Respiratoire, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Bitzén U, Enoksson J, Uttman L, Niklason L, Johansson L, Jonson B. Multiple pressure-volume loops recorded with sinusoidal low flow in a porcine acute respiratory distress syndrome model. Clin Physiol Funct Imaging 2006; 26:113-9. [PMID: 16494602 DOI: 10.1111/j.1475-097x.2006.00660.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To develop a method for automatic recording of multiple dynamic elastic pressure-volume (P(el)/V) loops. To analyse the relationship between multiple dynamic P(el)/V loops and static P(el)/V loops in a porcine model of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To test the hypothesis that increasing lung collapse and re-expansion with decreasing positive end expiratory pressure (PEEP) can be characterized by hysteresis of the P(el)/V loops. MATERIAL AND INTERVENTIONS: In eight anaesthetized and paralysed pigs, ALI/ARDS was induced by inhalation of dioctyl sodium sulfosuccinate and large tidal volume ventilation. MEASUREMENTS AND RESULTS The physiological and histopathological findings indicated a status mimicking an early stage of ALI/ARDS. Automatically, a series of dynamic P(el)/V loops from different PEEP levels were recorded with the sinusoidal flow modulation method using a computer-controlled ventilator. During expiration, resistance increased more than twofold. For each step of lower starting pressure, the inspiratory limb was displaced towards lower volume indicating derecruitment. Recruitment occurred between 20 and 40 cm H(2)O. The expiratory curves, all starting from 50 cm H(2)O, overlapped. Hysteresis increased significantly in loops recorded from lower PEEP levels. Viscoelasticity explained differences between static and dynamic P(el)/V loops. CONCLUSIONS Automated multiple P(el)/V loop determination is feasible and provides comprehensive information on lung derecruitment and recruitment. It requires determination of volume dependence of expiratory resistance. An expiratory curve serves as a reference to inspiratory curves and provides information about hysteresis.
Collapse
Affiliation(s)
- Ulrika Bitzén
- Department of Clinical Physiology, Lund University Hospital, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Popp A, Wendel M, Knels L, Koch T, Koch E. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:014015. [PMID: 16526892 DOI: 10.1117/1.2162158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).
Collapse
Affiliation(s)
- Alexander Popp
- Medical Faculty of Technical University Dresden, Clinical Sensoring and Monitoring, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
14
|
Albaiceta GM, Luyando LH, Parra D, Menendez R, Calvo J, Pedreira PR, Taboada F. Inspiratory vs. expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 2005; 31:1370-8. [PMID: 16091965 DOI: 10.1007/s00134-005-2746-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 07/03/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study the effects of two levels of positive end-expiratory pressure (PEEP), 2 cm H(2)O above the lower inflection point of the inspiratory limb and equal to the point of maximum curvature on the expiratory limb of the pressure-volume curve, in gas exchange, respiratory mechanics, and lung aeration. DESIGN AND SETTING Prospective clinical study in the intensive care unit and computed tomography ward of a university hospital. PATIENTS Eight patients with early acute lung injury. INTERVENTIONS Both limbs of the static pressure-volume curve were traced and inflection points calculated using a sigmoid model. During ventilation with a tidal volume of 6 ml/kg we sequentially applied a PEEP 2 cm H(2)O above the inspiratory lower inflection point (15.5+/-3.1 cm H(2)O) and a PEEP equal to the expiratory point of maximum curvature (23.5+/-4.1 cmH(2)O). MEASUREMENTS AND RESULTS Arterial blood gases, respiratory system compliance and resistance and changes in lung aeration (measured on three computed tomography slices during end-expiratory and end-inspiratory pauses) were measured at each PEEP level. PEEP according to the expiratory point of maximum curvature was related to an improvement in oxygenation, increase in normally aerated, decrease in nonaerated lung volumes, and greater alveolar stability. There was also an increase in PaCO(2), airway pressures, and hyperaerated lung volume. CONCLUSIONS High PEEP levels according to the point of maximum curvature of the deflation limb of the pressure-volume curve have both benefits and drawbacks.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Department of Intensive Medicine, Hospital Universitario Central de Asturias, Celestino Villamil s/n, 33006 Oviedo, Spain.
| | | | | | | | | | | | | |
Collapse
|