1
|
Zandstra J, Jongerius I, Kuijpers TW. Future Biomarkers for Infection and Inflammation in Febrile Children. Front Immunol 2021; 12:631308. [PMID: 34079538 PMCID: PMC8165271 DOI: 10.3389/fimmu.2021.631308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Febrile patients, suffering from an infection, inflammatory disease or autoimmunity may present with similar or overlapping clinical symptoms, which makes early diagnosis difficult. Therefore, biomarkers are needed to help physicians form a correct diagnosis and initiate the right treatment to improve patient outcomes following first presentation or admittance to hospital. Here, we review the landscape of novel biomarkers and approaches of biomarker discovery. We first discuss the use of current plasma parameters and whole blood biomarkers, including results obtained by RNA profiling and mass spectrometry, to discriminate between bacterial and viral infections. Next we expand upon the use of biomarkers to distinguish between infectious and non-infectious disease. Finally, we discuss the strengths as well as the potential pitfalls of current developments. We conclude that the use of combination tests, using either protein markers or transcriptomic analysis, have advanced considerably and should be further explored to improve current diagnostics regarding febrile infections and inflammation. If proven effective when combined, these biomarker signatures will greatly accelerate early and tailored treatment decisions.
Collapse
Affiliation(s)
- Judith Zandstra
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Ilse Jongerius
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
- Division Research and Landsteiner Laboratory, Department of Blood Cell Research, Sanquin Blood Supply, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
2
|
van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of Inflammation by Extracellular Granzyme A. Front Immunol 2020; 11:931. [PMID: 32508827 PMCID: PMC7248576 DOI: 10.3389/fimmu.2020.00931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Granzyme A (GrA) has long been recognized as one of the key players in the induction of cell death of neoplastic, foreign or infected cells after granule delivery by cytotoxic cells. While the cytotoxic potential of GrA is controversial in current literature, accumulating evidence now indicates roles for extracellular GrA in modulating inflammation and inflammatory diseases. This paper aims to explore the literature presenting current knowledge on GrA as an extracellular modulator of inflammation by summarizing (i) the presence and role of extracellular GrA in several inflammatory diseases, and (ii) the potential molecular mechanisms of extracellular GrA in augmenting inflammation.
Collapse
Affiliation(s)
- Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Hollestelle MJ, Lai KW, van Deuren M, Lenting PJ, de Groot PG, Sprong T, Bovenschen N. Cleavage of von Willebrand factor by granzyme M destroys its factor VIII binding capacity. PLoS One 2011; 6:e24216. [PMID: 21909423 PMCID: PMC3164717 DOI: 10.1371/journal.pone.0024216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/03/2011] [Indexed: 12/27/2022] Open
Abstract
Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF.
Collapse
Affiliation(s)
- Martine J Hollestelle
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
4
|
Association of genetic polymorphisms and risk of late post-transplantation infection in pediatric heart recipients. J Heart Lung Transplant 2011; 29:1342-51. [PMID: 20869265 DOI: 10.1016/j.healun.2010.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Late infections are common causes of morbidity and mortality after pediatric heart transplantation. In this multicenter study from 6 centers, we investigated the association between genetic polymorphisms (GPs) in immune response genes and late post-transplantation infections in 524 patients. METHODS Late infection was defined as a clinical infectious process occurring >60 days after transplantation and requiring hospitalization, intravenous antimicrobial therapy, or a life-threatening infection requiring oral therapy. All patients provided a blood sample for GP analyses of 18 GPs in cytokine, growth factor, and effector molecule genes by single specific primer-polymerase chain reaction and/or sequencing. Significant associations in univariable analyses were tested in multivariable Cox regression models. RESULTS Late infection was common, with 48.7% of patients experiencing ≥ 1 late infection, 25.2% had ≥ 1 late bacterial infection, and 30.5% had ≥ 1 late viral infection. Older age at transplantation was a protective factor for late infection, both bacterial and viral (hazard ratio [HR] 0.89-0.92 per 1-year age increase, p < 0.001). Adjusting for age, race, and transplant etiology, late bacterial infection was associated with HMOX1 A+326G AG and GG genotypes (HR, 2.41, 95% confidence interval [CI] 1.35-4.30; p = 0.003) and GZMB A-295G AA genotype (HR, 1.47; 95% CI; 1.03-2.1; p = 0.036). Late viral infection was associated with FAS A-670G GG genotype (HR, 1.42; 95% CI, 1.00-2.00; p = 0.050) in the adjusted model and with CTLA4 A+49G AA and AG genotypes (HR, 1.49; 95% CI, 1.02-2.19; p = 0.041) in univariable analysis. CONCLUSION We found an association between late bacterial infection and GP of HMOX1, which may control macrophage activation. A weaker association was also found between late viral infection and GP of CTLA4, a regulator of T-cell activation. This represents progress toward understanding the clinical and genetic risk factors of outcomes after transplantation.
Collapse
|
5
|
Hollestelle MJ, Sprong T, Bovenschen N, de Mast Q, van der Ven AJ, Joosten LAB, Neeleman C, Hyseni A, Lenting PJ, de Groot PG, van Deuren M. von Willebrand factor activation, granzyme-B and thrombocytopenia in meningococcal disease. J Thromb Haemost 2010; 8:1098-106. [PMID: 20158601 DOI: 10.1111/j.1538-7836.2010.03811.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SUMMARY BACKGROUND During invasive meningococcal disease, severe thrombocytopenia is strongly associated with a poor outcome. OBJECTIVES In order to elucidate the pathophysiological mechanism behind the development of thrombocytopenia, we studied the role of von Willebrand factor (VWF) in meningococcal disease. PATIENTS/METHODS Thirty-two children with severe meningococcal disease admitted to our university hospital were included in this study. VWF and related parameters were measured and results were correlated with the development of shock and thrombocytopenia. RESULTS At admission, all patients had increased levels of (active) VWF and VWF propeptide. The highest VWF propeptide levels were observed in patients with shock, indicating acute endothelial activation. Although VWF propeptide levels in patients with shock, with or without thrombocytopenia, were similar, increased active VWF was significantly lower in patients with thrombocytopenia as compared with patients without thrombocytopenia. ADAMTS13 was moderately decreased. However, the VWF multimeric pattern was minimally increased. We assume that these findings are explained by VWF consumption and perhaps by granzyme B (GrB). In vitro experiments showed that GrB is able to cleave VWF multimers in plasma, whereas GrB was high in patients with shock, who developed thrombocytopenia. CONCLUSIONS Our results demonstrate that consumption of VWF, derived from endothelial cells, could be a key feature of meningococcal disease and primary to the development of thrombocytopenia during shock.
Collapse
Affiliation(s)
- M J Hollestelle
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev 2010; 235:73-92. [DOI: 10.1111/j.0105-2896.2010.00907.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R. Year in review in intensive care medicine, 2005. III. Nutrition, pediatric and neonatal critical care, and experimental. Intensive Care Med 2006; 32:490-500. [PMID: 16489423 DOI: 10.1007/s00134-006-0068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 01/08/2006] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Andrews
- Intensive Care Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Granzyme A (GrA) and granzyme B (GrB) play key roles in the induction of target cell death induced by cytotoxic lymphocytes. Whilst these roles have been extensively studied, it is becoming apparent that both granzymes also possess extracellular activities. Soluble granzymes are found extracellularly in normal plasma and are elevated in a number of diseases, ranging from viral and bacterial infections to autoimmune diseases. Here, we discuss the current knowledge of extracellular granzyme substrates, inhibitors and functions; and the pathological consequences of extracellular granzymes in disease. In addition, we provide new evidence for the role of glycosaminoglycan-binding sites of granzymes in extracellular matrix remodeling.
Collapse
Affiliation(s)
- Marguerite S Buzza
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia
| | | |
Collapse
|
9
|
Biezeveld MH, van Mierlo G, Lutter R, Kuipers IM, Dekker T, Hack CE, Newburger JW, Kuijpers TW. Sustained activation of neutrophils in the course of Kawasaki disease: an association with matrix metalloproteinases. Clin Exp Immunol 2005; 141:183-8. [PMID: 15958085 PMCID: PMC1809423 DOI: 10.1111/j.1365-2249.2005.02829.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kawasaki disease (KD) is an acute febrile syndrome of childhood, characterized by vasculitis of the medium-sized arteries. White blood cell counts and the inflammatory parameter C-reactive protein (CRP) are known to be elevated in the acute phase of the disease. In this study we investigated the course of inflammatory cell type-specific parameters in KD over a longer period of time. Plasma levels of human neutrophil elastase (HNE), matrix metalloproteinases-2 and -9 (MMP2, MMP9), and neutrophil gelatinase-associated lipocalin (NGAL), macrophage neopterin and CRP were measured. Plasma samples were collected in the acute, subacute and early convalescent stage, and three months after the onset of disease. Median CRP and neopterin normalized within two weeks. In contrast, six weeks and three months after onset of disease, levels of HNE were still elevated, with median values of 163 ng/ml and 156 ng/ml, respectively (control children median < 50 ng/ml; for all time-points P < 0.0001). Values of NGAL correlated with the levels of HNE (r = 0.39, P = 0.013). These results demonstrate a longer state of neutrophil activation in KD than was previously assumed. The potential relationship between this prolonged neutrophil activation, coronary artery lesion formation and their persistence, as well as the risk of premature atherosclerosis warrants further evaluation.
Collapse
Affiliation(s)
- M H Biezeveld
- Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
van Woensel JBM, Biezeveld MH, Hack CE, Bos AP, Kuijpers TW. Elastase and granzymes during meningococcal disease in children: correlation to disease severity. Intensive Care Med 2005; 31:1239-47. [PMID: 16010574 DOI: 10.1007/s00134-005-2720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 06/21/2005] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the levels of human neutrophil elastase and lymphocyte-derived granzymes A and B in relation to disease severity in children with meningococcal disease. DESIGN Clinical observational cohort study. SETTING Paediatric intensive care unit. PATIENTS All patients with meningococcal disease during the study period were included. MEASUREMENTS AND RESULTS Blood sampling was done on the day of admission and on days 3 and 7. Assays for elastase and granzymes were done with ELISA. Sixty-one patients were included: 19 having distinct meningitis; 17 meningitis and shock; and 25 fulminant septicaemia. On admission levels of elastase were increased in all patients, being highest in those with fulminant septicaemia and lowest in those with distinct meningitis. Granzyme A (although marginally) and granzyme B levels were only increased in patients with shock. In 20 of the 28 patients admitted for > or = 3 days elastase decreased from admission ("rapid-decrease" group). In the remaining 8 patients, elastase started to decrease after 2 days ("slow-decrease" group). Patients of the "slow-decrease" group had a higher temperature up to day 4, needed more respiratory support (mean airway pressure in cm H2O on days 3 and 4: p=0.02 and p<0.01, respectively), and more circulatory support (>2 inotropic agents on day 3; p=0.04) compared with the "rapid-decrease" group. CONCLUSIONS Human neutrophil elastase and granzyme B are related with disease severity during the initial phase of meningococcal disease and prolonged neutrophil activation is associated with the extent of organ dysfunction during the period thereafter.
Collapse
Affiliation(s)
- Job B M van Woensel
- Paediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, P.O. Box 22660, 1100DD Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|