1
|
Wan W, Ding Y, Xie Z, Li Q, Yan F, Budbazar E, Pearce WJ, Hartman R, Obenaus A, Zhang JH, Jiang Y, Tang J. PDGFR-β modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-κB pathway in subarachnoid hemorrhage rats. J Cereb Blood Flow Metab 2019; 39:1369-1380. [PMID: 29480757 PMCID: PMC6668513 DOI: 10.1177/0271678x18760954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Platelet-derived growth factor receptor-β (PDGFR-β) has been reported to promote phenotypic transformation of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the role of the PDGFR-β/IRF9/SIRT-1/NF-κB pathway in VSMC phenotypic transformation after subarachnoid hemorrhage (SAH). SAH was induced using the endovascular perforation model in Sprague-Dawley rats. PDGFR-β small interfering RNA (siRNA) and IRF9 siRNA were injected intracerebroventricularly 48 h before SAH. SIRT1 activator (resveratrol) and inhibitor (EX527) were administered intraperitoneally 1 h after SAH induction. Twenty-four hours after SAH, the VSMC contractile phenotype marker α-smooth muscle actin (α-SMA) decreased, whereas the VSMC synthetic phenotype marker embryonic smooth muscle myosin heavy chain (Smemb) increased. Both PDGFR-β siRNA and IRF9 siRNA attenuated the induction of nuclear factor-κB (NF-κB) and enhanced the expression of α-SMA. The SIRT1 activator (resveratrol) preserved VSMC contractile phenotype, significantly alleviated neurological dysfunction, and reduced brain edema. However, these beneficial effects of PDGFR-β siRNA, IRF9 siRNA and resveratrol were abolished by the SIRT1 inhibitor (EX527). This study shows that PDGFR-β/IRF9/SIRT-1/NF-κB signaling played a role in the VSMC phenotypic transformation after SAH. Inhibition of this signaling cascade preserved the contractile phenotype of VSMCs, thereby improving neurological outcomes following SAH.
Collapse
Affiliation(s)
- Weifeng Wan
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA.,2 Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Ding
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Zongyi Xie
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Qian Li
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Feng Yan
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Enkhjargal Budbazar
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - William J Pearce
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Richard Hartman
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Yong Jiang
- 2 Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiping Tang
- 1 Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Akkaya E, Evran Ş, Çalış F, Çevik S, Hanımoğlu H, Seyithanoğlu MH, Katar S, Karataş E, Koçyiğit A, Sağlam MY, Hatiboğlu MA, Kaynar MY. Effects of Intrathecal Verapamil on Cerebral Vasospasm in Experimental Rat Study. World Neurosurg 2019; 127:e1104-e1111. [DOI: 10.1016/j.wneu.2019.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
|
3
|
Zhang Z, Zhao G, Liu L, He J, Darwazeh R, Liu H, Chen H, Zhou C, Guo Z, Sun X. Bexarotene Exerts Protective Effects Through Modulation of the Cerebral Vascular Smooth Muscle Cell Phenotypic Transformation by Regulating PPARγ/FLAP/LTB 4 After Subarachnoid Hemorrhage in Rats. Cell Transplant 2019; 28:1161-1172. [PMID: 31010302 PMCID: PMC6767892 DOI: 10.1177/0963689719842161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role after a subarachnoid hemorrhage (SAH). The changes in VSMCs following bexarotene treatment after SAH are unknown. In the present study, neurological impairment, decreased cerebral cortical blood flow and transformation of cerebral VSMCs from a contractile to a synthetic phenotype were observed after SAH. Bexarotene reduced neurological impairment, improved cerebral cortical blood flow, inhibited VSMC phenotypic transformation and suppressed the expression of 5-lipoxygenase-activating protein (FLAP) and leukotriene B4 (LTB4), which was partly reversed by GW9662, an inhibitor of peroxisome proliferator-activated receptor gamma (PPARγ). Mechanistically, sh-PPARγ-mediated phenotypic transformation of VSMCs was partially suppressed by MK886, an antagonist of FLAP. Therefore, we conclude that bexarotene reduced neurological impairment, improved cerebral cortical blood flow and inhibited the VSMC phenotypic transformation after SAH, which was achieved by activating PPARγ-mediated inhibition of FLAP/LTB4 in VSMCs.
Collapse
Affiliation(s)
- Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rami Darwazeh
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Yang L, Lai WT, Wu YS, Zhang JA, Zhou XH, Yan J, Fang C, Zeng EM, Tang B, Peng CL, Zhao Y, Hong T. Simple and efficient rat model for studying delayed cerebral ischemia after subarachnoid hemorrhage. J Neurosci Methods 2018; 304:146-153. [DOI: 10.1016/j.jneumeth.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
|
5
|
Lilla N, Hartmann J, Koehler S, Ernestus RI, Westermaier T. Early NO-donor treatment improves acute perfusion deficit and brain damage after experimental subarachnoid hemorrhage in rats. J Neurol Sci 2016; 370:312-319. [DOI: 10.1016/j.jns.2016.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/25/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
|
6
|
Marbacher S, Fathi AR, Muroi C, Coluccia D, Andereggen L, Neuschmelting V, Widmer HR, Jakob SM, Fandino J. The rabbit blood shunt subarachnoid haemorrhage model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:337-42. [PMID: 25366648 DOI: 10.1007/978-3-319-04981-6_58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recently introduced rabbit blood shunt subarachnoid haemorrhage model is based on the two standard procedures of subclavian artery cannulation and transcutaneous cisterna magna puncture. An extracorporeal shunt placed in between the arterial system and the subarachnoid space allows examiner-independent SAH in a closed cranium. Despite its straightforwardness, it is worth examining some specific features and characteristics of the model. We outline technical considerations to successfully perform the model with minimal mortality and morbidity. In addition, we discuss outcome measures, advantages and limitations, and the applicability of the model for the study of early brain injury and delayed cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kikkawa Y, Kurogi R, Sasaki T. The single and double blood injection rabbit subarachnoid hemorrhage model. Transl Stroke Res 2014; 6:88-97. [PMID: 25381219 DOI: 10.1007/s12975-014-0375-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
Over the past 30 years, the rabbit subarachnoid hemorrhage model (SAH) has been used for investigating the post-hemorrhage pathology, especially with respect to understanding of the mechanisms of cerebral vasospasm. However, the molecular mechanisms of cerebral vasospasm remain to be elucidated. Furthermore, it is not clear whether the rabbit SAH model is suitable for the investigation of pathological conditions other than cerebral vasospasm, such as early brain injury. Therefore, the properties of the rabbit SAH model need to be validated, and the reasons for using the rabbit should be clarified. This review explores the settings and technical issues of establishing a rabbit cisterna magna single and double blood injection SAH model and discusses the characteristics and feasibilities of the models.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
8
|
Marbacher S, Nevzati E, Croci D, Erhardt S, Muroi C, Jakob SM, Fandino J. The rabbit shunt model of subarachnoid haemorrhage. Transl Stroke Res 2014; 5:669-80. [PMID: 25326333 DOI: 10.1007/s12975-014-0369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a disease with devastating complications that leads to stroke, permanent neurological deficits and death. Clinical and ex-perimental work has demonstrated the importance of the contribution of delayed cerebral vasospasm (DCVS) indepen-dent early events to mortality, morbidity and functional out-come after SAH. In order to elucidate processes involved in early brain injury (EBI), animal models that reflect acute events of aneurysmal bleeding, such as increase in intracranial pressure (ICP) and decrease in cerebral perfusion pressure, are needed. In the presented arterial shunt model, bleeding is initially driven by the pressure gradient between mean arterial blood pressure and ICP. SAH dynamics (flow rate, volume and duration) depend on physiological reactions and local anatomical intrathecal (cistern) conditions. During SAH, ICP reaches a plateau close to diastolic arterial blood pressure and the blood flow stops. Historical background, anaesthesia, perioperative care and monitoring, SAH induction, technical considerations and advantages and limitations of the rabbit blood shunt SAH model are discussed in detail. Awareness of technical details, physiological characteristics and appropriate monitoring methods guarantees successful implementation of the rabbit blood shunt model and allows the study of both EBI and DCVS after SAH.
Collapse
Affiliation(s)
- Serge Marbacher
- Cerebrovascular Research Laboratory of the Department of Intensive Care Medicine, University Hospital and University of Bern, Bern, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang F, Yin YH, Jia F, Jiang JY. Effects of topical administration of nimodipine on cerebral blood flow following subarachnoid hemorrhage in pigs. J Neurotrauma 2013; 30:591-6. [PMID: 19558207 DOI: 10.1089/neu.2009.0890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We sought to explore whether topical administration of nimodipine improves the abnormal cerebral perfusion following subarachnoid hemorrhage (SAH) in pigs. Fourteen pigs were randomly divided into three groups: sham (n=4), SAH (n=5), or SAH + nimodipine (n=5). The SAH model was established by injecting fresh autologous nonheparinized arterial blood into the suprasellae cistern. Nimodipine or saline placebo (0.04 g/mL) were administered to the operative area on the fourth day after the SAH model was established. The cerebral blood flow (CBF) was measured 60 min after topical administration of nimodipine by cranial SPECT/CT scans with 5 mCi 99mTc-ECD injected intravenously. The CCR (corticocebellar ratio) was calculated by dividing the counts/voxel of the whole cerebral hemisphere by the average count/voxel in the cerebellar region of reference and RD (relative dispersion). A predictor for impaired autoregulation of CBF was calculated by dividing standard deviation (SD) of regional perfusion by mean perfusion (RD=SD/Mean). CCR and RD were applied to describe hemisphere CBF and perfusion heterogeneity. Cerebral perfusion significantly decreased in the SAH group (CCR: 1.382±0.192, RD: 0.417±0.015) compared to sham (CCR: 1.988±0.346, RD 0.389±0.015) (p<0.05). Abnormal cerebral perfusion status, however, was not significantly improved in the nimodipine + SAH group (CCR: 1.503±0.107, RD: 0.425±0.018) compared to the SAH group (p>0.05). Topical administration of nimodipine did not significantly improve CBF following SAH. These findings were not consistent with our previous data demonstrating that the topical administration of nimodipine significantly alleviates cerebral vasospasm following SAH detected by TCD. Potential mechanisms governing these disparate outcomes require further investigation.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
10
|
Local delivery of nimodipine by prolonged-release microparticles-feasibility, effectiveness and dose-finding in experimental subarachnoid hemorrhage. PLoS One 2012; 7:e42597. [PMID: 23049732 PMCID: PMC3458040 DOI: 10.1371/journal.pone.0042597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose To investigate the effect of locally applied nimodipine prolonged-release microparticles on angiographic vasospasm and secondary brain injury after experimental subarachnoid hemorrhage (SAH). Methods 70 male Wistar rats were categorized into three groups: 1) sham operated animals (control), 2) animals with SAH only (control) and the 3) treatment group. SAH was induced using the double hemorrhage model. The treatment group received different concentrations (20%, 30% or 40%) of nimodipine microparticles. Angiographic vasospasm was assessed 5 days later using digital subtraction angiography (DSA). Histological analysis of frozen sections was performed using H&E-staining as well as Iba1 and MAP2 immunohistochemistry. Results DSA images were sufficient for assessment in 42 animals. Severe angiographic vasospasm was present in group 2 (SAH only), as compared to the sham operated group (p<0.001). Only animals within group 3 and the highest nimodipine microparticles concentration (40%) as well as group 1 (sham) demonstrated the largest intracranial artery diameters. Variation in vessel calibers, however, did not result in differences in Iba-1 or MAP2 expression, i.e. in histological findings for secondary brain injury. Conclusions Local delivery of high-dose nimodipine prolonged-release microparticles at high concentration resulted in significant reduction in angiographic vasospasm after experimental SAH and with no histological signs for matrix toxicity.
Collapse
|
11
|
Zoerle T, Ilodigwe DC, Wan H, Lakovic K, Sabri M, Ai J, Macdonald RL. Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: systematic review and meta-analysis. J Cereb Blood Flow Metab 2012; 32:1645-58. [PMID: 22534672 PMCID: PMC3437599 DOI: 10.1038/jcbfm.2012.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models have been developed to simulate angiographic vasospasm secondary to subarachnoid hemorrhage (SAH) and to test pharmacologic treatments. Our aim was to evaluate the effect of pharmacologic treatments that have been tested in humans and in preclinical studies to determine if animal models inform results reported in humans. A systematic review and meta-analysis of SAH studies was performed. We investigated predictors of translation from animals to humans with multivariate logistic regression. Pharmacologic reduction of vasospasm was effective in mice, rats, rabbits, dogs, nonhuman primates (standard mean difference of -1.74; 95% confidence interval -2.04 to -1.44) and humans. Animal studies were generally of poor methodologic quality and there was evidence of publication bias. Subgroup analysis by drug and species showed that statins, tissue plasminogen activator, erythropoietin, endothelin receptor antagonists, calcium channel antagonists, fasudil, and tirilazad were effective whereas magnesium was not. Only evaluation of vasospasm >3 days after SAH was independently associated with successful translation. We conclude that reduction of vasospasm is effective in animals and humans and that evaluation of vasospasm >3 days after SAH may be preferable for preclinical models.
Collapse
Affiliation(s)
- Tommaso Zoerle
- Division of Neurosurgery, St Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St Michael's Hospital, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
13
|
A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: a study with synchrotron radiation angiography. PLoS One 2012; 7:e33366. [PMID: 22428033 PMCID: PMC3299776 DOI: 10.1371/journal.pone.0033366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [125I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm.
Collapse
|
14
|
Fathi AR, Marbacher S, Graupner T, Wehrli F, Jakob SM, Schroth G, Fandino J. Continuous intrathecal glyceryl trinitrate prevents delayed cerebral vasospasm in the single-SAH rabbit model in vivo. Acta Neurochir (Wien) 2011; 153:1669-75; discussion 1675. [PMID: 21671141 DOI: 10.1007/s00701-011-1049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is a major cause of high morbidity and mortality. The reduced availability of nitric oxide (NO) in blood and cerebrospinal fluid (CSF) is well established as a key mechanism of vasospasm. Systemic administration of glyceryl trinitrate (GTN), an NO donor also known as nitroglycerin, has failed to be established in clinical settings to prevent vasospasm because of its adverse effects, particularly hypotension. The purpose of this study was to analyze the effect of intrathecally administered GTN on vasospasm after experimental SAH in the rabbit basilar artery. METHODS A single-hemorrhage model of SAH in rabbits was used to induce vasospasm. GTN (0.5 mg/ml) or saline was infused via a subcutaneous implanted osmotic pump with continuous drug release into the cerebellomedullary cistern over 5 days. The degree of vasospasm in the basilar artery was recorded with angiography on day 5 after SAH and was compared to baseline angiography on day 0. FINDINGS Significant reduction of basilar artery diameter was observed in the SAH group with saline infusion compared to sham-operated animals. Intrathecally administered GTN had no effect on the vessel diameter in sham-operated animals, whereas it significantly prevented vasospasm in the SAH group. Intrathecal GTN infusion did not affect arterial blood pressure. CONCLUSIONS Prophylactic, continuous intrathecal administration of GTN prevents vasospasm of the basilar artery in the rabbit SAH model. No toxic effects could be demonstrated in this study. The clinical safety and feasibility of this strategy need to be further investigated.
Collapse
Affiliation(s)
- Ali Reza Fathi
- Cerebrovascular Research Group, Department of Intensive Care Medicine, University of Berne, Berne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Fathi AR, Bakhtian KD, Pluta RM. The role of nitric oxide donors in treating cerebral vasospasm after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:93-7. [PMID: 21116922 DOI: 10.1007/978-3-7091-0353-1_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduced intra- and perivascular availability of nitric oxide (NO) significantly contributes to the multifactorial pathophysiology of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The short half-life of NO demands its therapeutic substitution via NO donors. Classic NO donors such as sodium nitroprusside and nitroglycerin cannot be used as routine therapeutics because of serious side effects. Thus, a new generation of NO donors has been the subject of experimental investigations to avoid the drawbacks of the classic drugs. The purpose of this paper is to review the characteristics of different NO donors with regard to their promise and potential consequences in treating cerebral vasospasm. Additional novel concepts to increase NO concentrations, such as the activation of endothelial nitric oxide synthase (eNOS), are discussed.
Collapse
Affiliation(s)
- Ali R Fathi
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bldg 10, Room 3D20, SNB/NINDS/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Comparison of intrathecal cilostazol and nimodipine treatments in subarachnoid hemorrhage: an experimental study in rabbits. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:43-8. [PMID: 21125444 DOI: 10.1007/978-3-7091-0356-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVE intrathecal administration of calcium channel antagonists has been proposed to reduce cerebral vasospasm (CVS) in animal subarachnoid hemorrhage (SAH) models. Also, delayed CVS treatment model with oral administration of cilostazol can be seen in the literature. METHODS in this study, 25 male New Zealand white rabbits were randomly assigned to five groups: control, SAH only, SAH/nimodipine, SAH/cilostazol, SAH/vehicle. The animals' basilar arteries were sectioned from four separate zones and four sections were obtained from each rabbit. Basilar artery luminal section areas were measured by using SPOT for windows Version 4.1 computer program. RESULTS basilar artery luminal section areas in SAH/ nimodipine and SAH/ cilostazol groups were significantly higher than SAH only group (P < 0.05). CONCLUSION phosphodiesterase 3 inhibitor cilostazol has vasodilatory effects without affecting cerebral blood flow. Nimodipine is a calcium channel blocker and is still used in vasospasm therapy either oral or intravenously. This study demonstrates that prophylactic bolus intrathecal administration of either cilostazol or nimodipine equally prevents SAH-associated CVS in an animal model. We therefore propose that cilostazol is a candidate for clinical trials in the treatment of delayed vasospasm.
Collapse
|
17
|
Shao Z, Li J, Zhao Z, Gao C, Sun Z, Liu X. Effects of tetramethylpyrazine on nitric oxide/cGMP signaling after cerebral vasospasm in rabbits. Brain Res 2010; 1361:67-75. [PMID: 20849833 DOI: 10.1016/j.brainres.2010.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 01/20/2023]
Abstract
Tetramethylpyrazine (TMP), an ingredient of Chinese herbal Szechwan lovage rhizome, shows vasorelaxant effect. Cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH) is associated with high mortality and morbidity. Here, we evaluated the effect of TMP in a model of CVS and sought to identify the underlying mechanisms of action. A rabbit SAH model was established by injection of the autoblood via cisterna magna. Cerebral blood flow and arterial diameter were measured by Transcranial Doppler (TCD) and Computed Tomography Angiography (CTA). Expression of eNOS and PDE-V in basilar artery (BA) was assessed by western blots. Levels of nitric oxide (NO) in plasma and cerebral spinal fluid, and of intra-endothelium Ca(2+) were measured. Significantly reduced diameter and accelerated blood flow velocity were detected in BAs of SAH animals (P<0.05 vs. sham group). Expression of eNOS and NO was increased, and PDE-V expression was reduced by TMP.TMP ameliorated cerebral vasospasm (P<0.05 vs. SAH group), and L-NAME (a NOS inhibitor) partly abrogated the effects of TMP. TMP induced a dose-dependent increase of intra-endothelium Ca(2+). The current results demonstrated that the vasorelaxant effect of TMP was at least in part via regulation of NO/cGMP signaling.
Collapse
Affiliation(s)
- Zhengkai Shao
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Salvetti DJ, Sinha TK, Wilson KJ, Shay SD, Spratt DE, Mericle RA. An automated algorithm to improve the precision of basilar artery diameter measurements before and after subarachnoid hemorrhage-induced vasospasm in an animal model. Neurosurgery 2009; 66:137-42; discussion 142-3. [PMID: 20023544 DOI: 10.1227/01.neu.0000362035.70735.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Quantifying vasospasm has traditionally been performed manually, a method prone to imprecision and user bias. An alternative approach is to use computerized image analysis techniques to define and quantify the diameter of a vessel. The goal of this article is to demonstrate a novel automated vessel measurement algorithm specific to the needs of vasospasm studies and to compare it with traditional manual measurements in an animal model of vasospasm. METHODS A total of 576 arterial diameter measurements were collected by 4 independent, blinded examiners from 24 angiograms in a rabbit subarachnoid hemorrhage (SAH) model. Measurements were taken from 3 segments of the basilar artery in anteroposterior and lateral projections, both before SAH and after SAH-induced vasospasm. Means and standard deviations of 288 manual measurements were compared with 288 automated measurements. RESULTS The precision of automated measurements was significantly improved compared with standardized manual measurements (85.7% decrease in variation; P < .001). When using automated measurements, the precision was not affected by vessel size, but when using manual measurements, smaller arteries were less precise (P = .04). There was no significant difference in precision between 2 different contrast concentrations (P = .32). CONCLUSION Automated measurements of basilar artery diameters are more precise than manual measurements, both before and after SAH-induced vasospasm. The variability in the manual group worsens when the artery is smaller secondary to vasospasm, indicating a need for the use of this segmentation method.
Collapse
Affiliation(s)
- David J Salvetti
- Department of Neurological Surgery, Vanderbilt University School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
19
|
Pluta RM, Butman JA, Schatlo B, Johnson DL, Oldfield EH. Subarachnoid hemorrhage and the distribution of drugs delivered into the cerebrospinal fluid. Laboratory investigation. J Neurosurg 2009; 111:1001-7, 1-4. [PMID: 19374502 DOI: 10.3171/2009.2.jns081256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Investigators in experimental and clinical studies have used the intrathecal route to deliver drugs to prevent or treat vasospasm. However, a clot near an artery or arteries after subarachnoid hemorrhage (SAH) may hamper distribution and limit the effects of intrathecally delivered compounds. In a primate model of right middle cerebral artery (MCA) SAH, the authors examined the distribution of Isovue-M 300 and 3% Evans blue after infusion into the cisterna magna CSF. METHODS Ten cynomolgus monkeys were assigned to SAH and sham SAH surgery groups (5 in each group). Monkeys received CSF injections as long as 28 days after SAH and were killed 3 hours after the contrast/Evans blue injection. The authors assessed the distribution of contrast material on serial CT within 2 hours after contrast injection and during autopsy within 3 hours after Evans blue staining. RESULTS Computed tomography cisternographies showed no contrast in the vicinity of the right MCA (p < 0.05 compared with left); the distribution of contrast surrounding the entire right cerebral hemisphere was substantially reduced. Postmortem analysis demonstrated much less Evans blue staining of the right hemisphere surface compared with the left. Furthermore, the Evans blue dye did not penetrate into the right sylvian fissure, which occurred surrounding the left MCA. The authors observed the same pattern of changes and differences in contrast distribution between SAH and sham SAH animals and between the right and the left hemispheres on Days 1, 3, 7, 14, 21, and 28 after SAH. CONCLUSIONS Intrathecal drug distribution is substantially limited by SAH. Thus, when using intrathecal drug delivery after SAH, vasoactive drugs are unlikely to reach the arteries that are at the highest risk of delayed cerebral vasospasm.
Collapse
Affiliation(s)
- Ryszard M Pluta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | | | | | | | |
Collapse
|
20
|
Hänggi D, Eicker S, Beseoglu K, Rapp M, Perrin J, Nawatny J, Turowski B, Sommer C, Steiger HJ. DOSE‐RELATED EFFICACY OF A CONTINUOUS INTRACISTERNAL NIMODIPINE TREATMENT ON CEREBRAL VASOSPASM IN THE RAT DOUBLE SUBARACHNOID HEMORRHAGE MODEL. Neurosurgery 2009; 64:1155-9; discussion 1159-61. [DOI: 10.1227/01.neu.0000340685.06407.fd] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Daniel Hänggi
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Sven Eicker
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Kerim Beseoglu
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Jason Perrin
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens Nawatny
- Department of Neuroradiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Bernd Turowski
- Department of Neuroradiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Clemens Sommer
- Department of Neuropathology, Johannes-Gutenberg University, Mainz, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Norepinephrine-induced hypertension dilates vasospastic basilar artery after subarachnoid haemorrhage in rabbits. Acta Neurochir (Wien) 2009; 151:487-93. [PMID: 19343267 DOI: 10.1007/s00701-009-0287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Vasopressor-induced hypertension is routinely indicated for prevention and treatment of cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH). Mechanisms underlying patients' clinical improvement during vasopressor-induced hypertension remain incompletely understood. The aim of this study was to evaluate angiographic effects of normovolaemic Norepinephrine (NE)-induced hypertension therapy on the rabbit basilar artery (BA) after SAH. METHODS Cerebral vasospasm was induced using the one-haemorrhage rabbit model; sham-operated animals served as controls. Five days later the animals underwent follow-up angiography prior to and during NE-induced hypertension. Changes in diameter of the BA were digitally calculated in mean microm +/- SEM (standard error of mean). FINDINGS Significant CVS of 14.2% was documented in the BA of the SAH animals on day 5 compared to the baseline angiogram on day 0 (n = 12, p < 0.01), whereas the BA of the control animals remained statistically unchanged (n = 12, p > 0.05). During systemic administration of NE, mean arterial pressure increased from 70.0 +/- 1.9 mmHg to 136.0 +/- 2.1 mmHg in the SAH group (n = 12, p < 0.001) and from 72.0 +/- 3.1 to 137.8 +/- 1.3 in the control group (n = 12, p < 0.001). On day 5 after SAH, a significant dilatation of the BA in response to norepinephrine could be demonstrated in both groups. The diameter of the BA in the SAH group increased from 640.5 +/- 17.5 microm to 722.5 +/- 23.7 microm (n = 12, p < 0.05; ). In the control group the diameter increased from 716.8 +/- 15.5 microm to 779.9 +/- 24.1 microm (n = 12, p < 0.05). CONCLUSION This study demonstrated that NE-induced hypertension causes angiographic dilatation of the BA in the SAH rabbit model. Based on these observations, it can be hypothesised that clinical improvement during vasopressor-induced hypertension therapy after SAH might be explained with cerebral vasodilatation mechanisms that lead to improvement of cerebral blood flow.
Collapse
|
22
|
Effects of Dose-Response of Topical Administration of Nimodipine on Cerebral Vasospasm After Subarachnoid Hemorrhage in Rabbits. Am J Med Sci 2009; 337:123-5. [DOI: 10.1097/maj.0b013e31817d1ca1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Med 2009; 35:215-31. [PMID: 19125232 PMCID: PMC2638603 DOI: 10.1007/s00134-008-1380-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 12/11/2022]
|