1
|
Continuous assessment of neuro-ventilatory drive during 12 h of pressure support ventilation in critically ill patients. Crit Care 2020; 24:652. [PMID: 33218354 PMCID: PMC7677450 DOI: 10.1186/s13054-020-03357-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Pressure support ventilation (PSV) should allow spontaneous breathing with a “normal” neuro-ventilatory drive. Low neuro-ventilatory drive puts the patient at risk of diaphragmatic atrophy while high neuro-ventilatory drive may causes dyspnea and patient self-inflicted lung injury. We continuously assessed for 12 h the electrical activity of the diaphragm (EAdi), a close surrogate of neuro-ventilatory drive, during PSV. Our aim was to document the EAdi trend and the occurrence of periods of “Low” and/or “High” neuro-ventilatory drive during clinical application of PSV.
Method In 16 critically ill patients ventilated in the PSV mode for clinical reasons, inspiratory peak EAdi peak (EAdiPEAK), pressure time product of the trans-diaphragmatic pressure per breath and per minute (PTPDI/b and PTPDI/min, respectively), breathing pattern and major asynchronies were continuously monitored for 12 h (from 8 a.m. to 8 p.m.). We identified breaths with “Normal” (EAdiPEAK 5–15 μV), “Low” (EAdiPEAK < 5 μV) and “High” (EAdiPEAK > 15 μV) neuro-ventilatory drive. Results Within all the analyzed breaths (177.117), the neuro-ventilatory drive, as expressed by the EAdiPEAK, was “Low” in 50.116 breath (28%), “Normal” in 88.419 breaths (50%) and “High” in 38.582 breaths (22%). The average times spent in “Low”, “Normal” and “High” class were 1.37, 3.67 and 0.55 h, respectively (p < 0.0001), with wide variations among patients. Eleven patients remained in the “Low” neuro-ventilatory drive class for more than 1 h, median 6.1 [3.9–8.5] h and 6 in the “High” neuro-ventilatory drive class, median 3.4 [2.2–7.8] h. The asynchrony index was significantly higher in the “Low” neuro-ventilatory class, mainly because of a higher number of missed efforts.
Conclusions We observed wide variations in EAdi amplitude and unevenly distributed “Low” and “High” neuro ventilatory drive periods during 12 h of PSV in critically ill patients. Further studies are needed to assess the possible clinical implications of our physiological findings.
Collapse
|
2
|
Dai YL, Hsu RJ, Huang HK, Huang TW, Tsai WC, Chang H, Lan CC, Huang KL. Adaptive support ventilation attenuates postpneumonectomy acute lung injury in a porcine model. Interact Cardiovasc Thorac Surg 2020; 31:718-726. [PMID: 33051664 DOI: 10.1093/icvts/ivaa157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES An optimal ventilation strategy that causes as little mechanical stress and inflammation as possible is critical for patients undergoing pneumonectomy. The aim of this study was to determine whether adaptive support ventilation (ASV) can provide protective ventilation to the remaining lung after pneumonectomy with minimal mechanical stress and less inflammation than volume-control ventilation (VCV). METHODS In this study, 15 pigs were randomly allocated to 3 groups (n = 5 for each group): the control group, the VCV group and the ASV group. After left pneumonectomy, the VCV group was treated with the volume-control set to 20 ml/kg, and the ASV group with the mode set to achieve 60% of the minute ventilation of 2 lungs. RESULTS The ASV group had lower alveolar strain than the VCV group. The ASV group exhibited less lung injury and greater alveolar fluid clearance than the VCV group (13.3% vs -17.8%; P ≤ 0.018). Ventilator-induced lung injury was associated with changes in the cytokine levels in the exhaled breath condensate, differential changes in plasma and changes in the cytokines in the bronchoalveolar lavage fluid. Expression of 3 microRNAs (miR449b-3p, P ≤ 0.001; miR451-5p, P = 0.027; and miR144-5p, P = 0.008) was increased in the VCV group compared with the ASV group. CONCLUSIONS The ASV mode was capable of supporting rapid, shallow breathing patterns to exert lung-protective effects in a porcine postpneumonectomy model. Further investigation of microRNAs as biomarkers of ventilator-induced lung injury is warranted.
Collapse
Affiliation(s)
- Yu-Ling Dai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jun Hsu
- Cancer Research Center, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsu-Kai Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital Taipei, National Defense Medical Center, Taipei, Taiwan
| | - Hung Chang
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Dai YL, Wu CP, Yang GG, Chang H, Peng CK, Huang KL. Adaptive Support Ventilation Attenuates Ventilator Induced Lung Injury: Human and Animal Study. Int J Mol Sci 2019; 20:ijms20235848. [PMID: 31766467 PMCID: PMC6929029 DOI: 10.3390/ijms20235848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Adaptive support ventilation (ASV) is a closed-loop ventilation, which can make automatic adjustments in tidal volume (VT) and respiratory rate based on the minimal work of breathing. The purpose of this research was to study whether ASV can provide a protective ventilation pattern to decrease the risk of ventilator-induced lung injury in patients of acute respiratory distress syndrome (ARDS). In the clinical study, 15 ARDS patients were randomly allocated to an ASV group or a pressure-control ventilation (PCV) group. There was no significant difference in the mortality rate and respiratory parameters between these two groups, suggesting the feasible use of ASV in ARDS. In animal experiments of 18 piglets, the ASV group had a lower alveolar strain compared with the volume-control ventilation (VCV) group. The ASV group exhibited less lung injury and greater alveolar fluid clearance compared with the VCV group. Tissue analysis showed lower expression of matrix metalloproteinase 9 and higher expression of claudin-4 and occludin in the ASV group than in the VCV group. In conclusion, the ASV mode is capable of providing ventilation pattern fitting into the lung-protecting strategy; this study suggests that ASV mode may effectively reduce the risk or severity of ventilator-associated lung injury in animal models.
Collapse
Affiliation(s)
- Yu-Ling Dai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Taiwan Landseed Hospital, Tao-Yuan 32449, Taiwan;
| | - Gee-Gwo Yang
- Division of Chest Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
| | - Hung Chang
- Department of Physiology, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-K.P.); (K.-L.H.); Tel.: +886-2-8792-3311 (ext. 13482) (C.-K.P.); +886-2-8792-3311 (ext. 12464) (K.-L.H)
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-K.P.); (K.-L.H.); Tel.: +886-2-8792-3311 (ext. 13482) (C.-K.P.); +886-2-8792-3311 (ext. 12464) (K.-L.H)
| |
Collapse
|
4
|
Gallagher JJ. Alternative Modes of Mechanical Ventilation. AACN Adv Crit Care 2019; 29:396-404. [PMID: 30523010 DOI: 10.4037/aacnacc2018372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Modern mechanical ventilators are more complex than those first developed in the 1950s. Newer ventilation modes can be difficult to understand and implement clinically, although they provide more treatment options than traditional modes. These newer modes, which can be considered alternative or nontraditional, generally are classified as either volume controlled or pressure controlled. Dual-control modes incorporate qualities of pressure-controlled and volume-controlled modes. Some ventilation modes provide variable ventilatory support depending on patient effort and may be classified as closed-loop ventilation modes. Alternative modes of ventilation are tools for lung protection, alveolar recruitment, and ventilator liberation. Understanding the function and application of these alternative modes prior to implementation is essential and is most beneficial for the patient.
Collapse
Affiliation(s)
- John J Gallagher
- John J. Gallagher is Trauma Program Manager/Clinical Nurse Specialist at Penn Presbyterian Medical Center, 51 N 39th Street, Medical Office Building, Suite 120, Philadelphia, PA 19104
| |
Collapse
|
5
|
Abstract
Closed loop control of mechanical ventilation is routine and operates behind the ventilator interface. Reducing caregiver interactions is neither an advantage for the patient or the staff. Automated systems causing lack of situational awareness of the intensive care unit are a concern. Along with autonomous systems must come monitoring and displays that display patients' current condition and response to therapy. Alert notifications for sudden escalation of therapy are required to ensure patient safety. Automated ventilation is useful in remote settings in the absence of experts. Whether automated ventilation will be accepted in large academic medical centers remains to be seen.
Collapse
|
6
|
Kiaei BA, Kashefi P, Hashemi ST, Moradi D, Mobasheri A. The Comparison Effects of Two Methods of (Adaptive Support Ventilation Minute Ventilation: 110% and Adaptive Support Ventilation Minute Ventilation: 120%) on Mechanical Ventilation and Hemodynamic Changes and Length of Being in Recovery in Intensive Care Units. Adv Biomed Res 2017; 6:52. [PMID: 28553625 PMCID: PMC5434676 DOI: 10.4103/2277-9175.205526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The conventional method for ventilation is supported by accommodative or adaptive support ventilation (ASV) that the latter method is done with two methods: ASV minute ventilation (mv): 110% and ASV mv: 120%. Regarding these methods this study compared the differences in duration of mechanical ventilation and hemodynamic changes during recovery and length of stay in Intensive Care Units (ICU). Materials and Methods: In a clinical trial study, forty patients candidate for ventilation were selected and randomly divided into two groups of A and B. All patients were ventilated by Rafael ventilator. Ventilator parameters were set on ASV mv: 110% or ASV mv: 120% and patients were monitored on pulse oximetry, electrocardiography monitoring, central vein pressure and arterial pressure. Finally, the data entered to computer and analyzed by SPSS software. Results: The time average of connection to ventilator in two groups in modes of ASV mv: 110% and 120% was 12.3 ± 3.66 and 10.8 ± 2.07 days respectively, and according to t-test, there was no significant difference between two groups (P = 0.11). The average of length of stay in ICU in two groups of 110% and 120% was 16.35 ± 3.51 and 15.5 ± 2.62 days respectively, and according to t-test, there found to be no significant difference between two groups (P = 0.41). Conclusion: Using ASV mv: 120% can decrease extubation time compared with ASV mv: 110%. Furthermore, there is not a considerable side effect on hemodynamic of patients.
Collapse
Affiliation(s)
- Babak Ali Kiaei
- Anesthesiology and Critical Care Research Center, Isfahan, Iran
| | - Parviz Kashefi
- Anesthesiology and Critical Care Research Center, Isfahan, Iran
| | | | - Daryoush Moradi
- Anesthesiology and Critical Care Research Center, Isfahan, Iran
| | - Ahmad Mobasheri
- Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
|
8
|
Ward D, Fulbrook P. Nursing Strategies for Effective Weaning of the Critically Ill Mechanically Ventilated Patient. Crit Care Nurs Clin North Am 2016; 28:499-512. [PMID: 28236395 DOI: 10.1016/j.cnc.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The risks imposed by mechanical ventilation can be mitigated by nurses' use of strategies that promote early but appropriate reduction of ventilatory support and timely extubation. Weaning from mechanical ventilation is confounded by the multiple impacts of critical illness on the body's systems. Effective weaning strategies that combine several interventions that optimize weaning readiness and assess readiness to wean, and use a weaning protocol in association with spontaneous breathing trials, are likely to reduce the requirement for mechanical ventilatory support in a timely manner. Weaning strategies should be reviewed and updated regularly to ensure congruence with the best available evidence.
Collapse
Affiliation(s)
- Darian Ward
- Education, Training and Research, Wide Bay Hospital and Health Service, 65 Main Street, Hervey Bay, Queensland 4655, Australia.
| | - Paul Fulbrook
- Nursing Research and Practice Development Centre, The Prince Charles Hospital, Brisbane 4032, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, 1100 Nudgee Road, Brisbane 4014, Australia
| |
Collapse
|
9
|
Teismann IK, Oelschläger C, Werstler N, Korsukewitz C, Minnerup J, Ringelstein E, Dziewas R. Discontinuous versus Continuous Weaning in Stroke Patients. Cerebrovasc Dis 2015; 39:269-77. [DOI: 10.1159/000381222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Background: An increasing number of stroke patients have to be supported by mechanical ventilation in intensive care units (ICU), with a relevant proportion of them requiring gradual withdrawal from a respirator. To date, weaning studies have focused merely on mixed patient groups, COPD patients or patients after cardiac surgery. Therefore, the best weaning strategy for stroke patients remains to be determined. Methods: Here, we designed a prospective randomized controlled study comparing adaptive support ventilation (ASV), a continuous weaning strategy, with biphasic positive airway pressure (BIPAP) in combination with spontaneous breathing trials, a discontinuous technique, in the treatment of stroke patients. The primary endpoint was the duration of the weaning process. Results: Only the 40 (out of 54) patients failing in an initial spontaneous breathing trial (T-piece test) were included into the study; the failure proportion is considerably larger compared to previous studies. Eligible patients were pseudo-randomly assigned to one of the two weaning groups. Both groups did not differ regarding age, gender, and severity of stroke. The results showed that the median weaning duration was 10.7 days (±SD 7.0) in the discontinuous weaning group, and 8 days (±SD 4.5) in the continuous weaning group (p < 0.05). Conclusions: To the best of our knowledge, this is the first clinical study to show that continuous weaning is significantly more effective compared to discontinuous weaning in mechanically ventilated stroke patients. We suppose that the reason for the superiority of continuous weaning using ASV as well as the bad performance of our patients in the 2 h T-piece test is caused by the patients' compliance. Compared to patients on surgical and medical ICUs, neurological patients more often suffer from reduced vigilance, lack of adverse-effects reflexes, dysphagia, and cerebral dysfunction. Therefore, stroke patients may profit from a more gradual withdrawal of weaning.
Collapse
|
10
|
Larraza S, Dey N, Karbing DS, Jensen JB, Nygaard M, Winding R, Rees SE. A mathematical model approach quantifying patients' response to changes in mechanical ventilation: evaluation in volume support. Med Eng Phys 2015; 37:341-9. [PMID: 25686673 DOI: 10.1016/j.medengphy.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/14/2014] [Accepted: 12/28/2014] [Indexed: 11/17/2022]
Abstract
This paper presents a mathematical model-approach to describe and quantify patient-response to changes in ventilator support. The approach accounts for changes in metabolism (V̇O2, V̇CO2) and serial dead space (VD), and integrates six physiological models of: pulmonary gas-exchange; acid-base chemistry of blood, and cerebrospinal fluid; chemoreflex respiratory-drive; ventilation; and degree of patients' respiratory muscle-response. The approach was evaluated with data from 12 patients on volume support ventilation mode. The models were tuned to baseline measurements of respiratory gases, ventilation, arterial acid-base status, and metabolism. Clinical measurements and model simulated values were compared at five ventilator support levels. The models were shown to adequately describe data in all patients (χ(2), p > 0.2) accounting for changes in V̇CO2, VD and inadequate respiratory muscle-response. F-ratio tests showed that this approach provides a significantly better (p < 0.001) description of measured data than: (a) a similar model omitting the degree of respiratory muscle-response; and (b) a model of constant alveolar ventilation. The approach may help predict patients' response to changes in ventilator support at the bedside.
Collapse
Affiliation(s)
- S Larraza
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark.
| | - N Dey
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - D S Karbing
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark
| | | | - M Nygaard
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - R Winding
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - S E Rees
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark
| |
Collapse
|
11
|
Stone DJ, Celi LA, Csete M. Engineering control into medicine. J Crit Care 2015; 30:652.e1-7. [PMID: 25680579 DOI: 10.1016/j.jcrc.2015.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 02/07/2023]
Abstract
The human body is a tightly controlled engineering miracle. However, medical training generally does not cover "control" (in the engineering sense) in physiology, pathophysiology, and therapeutics. A better understanding of how evolved controls maintain normal homeostasis is critical for understanding the failure mode of controlled systems, that is, disease. We believe that teaching and research must incorporate an understanding of the control systems in physiology and take advantage of the quantitative tools used by engineering to understand complex systems. Control systems are ubiquitous in physiology, although often unrecognized. Here we provide selected examples of the role of control in physiology (heart rate variability, immunity), pathophysiology (inflammation in sepsis), and therapeutic devices (diabetes and the artificial pancreas). We also present a high-level background to the concept of robustly controlled systems and examples of clinical insights using the controls framework.
Collapse
Affiliation(s)
- David J Stone
- Departments of Anesthesiology and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA; Center for Wireless Health, University of Virginia School of Engineering and Applied Science, Charlottesville, VA.
| | - Leo Anthony Celi
- Laboratory of Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Marie Csete
- Huntington Medical Research Institutes, Pasadena, CA.
| |
Collapse
|
12
|
Fernández J, Miguelena D, Mulett H, Godoy J, Martinón-Torres F. Adaptive support ventilation: State of the art review. Indian J Crit Care Med 2013; 17:16-22. [PMID: 23833471 PMCID: PMC3701392 DOI: 10.4103/0972-5229.112149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians.
Collapse
Affiliation(s)
- Jaime Fernández
- Department of Pediatric Intensive Care Unit, Fundación Cardio-Infantil, Sabana University and Rosario University, Bogotá, Colombia, South America
| | | | | | | | | |
Collapse
|
13
|
Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med 2012; 39:703-10. [PMID: 23151992 DOI: 10.1007/s00134-012-2742-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Our aim was to compare adaptive support ventilation with and without closed loop control by end tidal CO2 (ASVCO2, ASV) with pressure (PC) and volume control ventilation (VC) during simulated clinical scenarios [normal lungs (N), COPD, ARDS, brain injury (BI)]. METHODS A lung model was used to simulate representative compliance (mL/cmH2O): resistance (cmH2O/L/s) combinations, 45:5 for N and BI, 60:7.7 for COPD, 15:7.7 and 35:7.7 for ARDS. Two levels of PEEP (cmH2O) were used for each scenario, 12/16 for ARDS, and 5/10 for others. The CO2 productions of 2, 3, 4 and 5 mL/kg predicted body weight/min were simulated. Tidal volume was set to 6 mL/kg during VC and PC. Outcomes of interest were end tidal CO2 (etCO2) and plateau pressure (P Plat). RESULTS EtCO2 levels in N and BI and COPD were similar for all modes. In ARDS, etCO2 was higher in ASVCO2 than in other modes (p < 0.001). Under all mechanical conditions ASVCO2 revealed a narrower range of etCO2. P Plat was similar for all modes in all scenarios but ARDS where P Plat in ASV and ASVCO2 were lower than in VC (p = 0.001). When P Plat was ≥ 28 cmH2O, P plat in ASV and ASVCO2 were lower than in VC and PC (p = 0.024). CONCLUSION All modes performed similarly in most cases. Minor differences observed were in favor of the closed loop modes. Overall, ASVCO2 maintained tighter CO2 control. The ASVCO2 had the greatest impact during ARDS allowing etCO2 to increase and protecting against hypocapnia evident with other modes while ensuring lower P plat and tidal volumes.
Collapse
Affiliation(s)
- Demet S Sulemanji
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | |
Collapse
|
14
|
Arnal JM, Wysocki M, Novotni D, Demory D, Lopez R, Donati S, Granier I, Corno G, Durand-Gasselin J. Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV®) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study. Intensive Care Med 2012; 38:781-7. [PMID: 22460854 DOI: 10.1007/s00134-012-2548-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 02/28/2012] [Indexed: 01/11/2023]
Abstract
PURPOSE IntelliVent-ASV(®) is a development of adaptive support ventilation (ASV) that automatically adjusts ventilation and oxygenation parameters. This study assessed the safety and efficacy of IntelliVent-ASV(®) in sedated intensive care unit (ICU) patients with acute respiratory failure. METHODS This prospective randomized crossover comparative study was conducted in a 12-bed ICU in a general hospital. Two periods of 2 h of ventilation in randomly applied ASV or IntelliVent-ASV(®) were compared in 50 sedated, passively ventilated patients. Tidal volume (V(T)), respiratory rate (RR), inspiratory pressure (P(INSP)), SpO(2) and E(T)CO(2) were continuously monitored and recorded breath by breath. Mean values over the 2-h period were calculated. Respiratory mechanics, plateau pressure (P(PLAT)) and blood gas exchanges were measured at the end of each period. RESULTS There was no safety issue requiring premature interruption of IntelliVent-ASV(®). Minute ventilation (MV) and V(T) decreased from 7.6 (6.5-9.5) to 6.8 (6.0-8.0) L/min (p < 0.001) and from 8.3 (7.8-9.0) to 8.1 (7.7-8.6) mL/kg PBW (p = 0.003) during IntelliVent-ASV(®) as compared to ASV. P(PLAT) and FiO(2) decreased from 24 (20-29) to 20 (19-25) cmH(2)O (p = 0.005) and from 40 (30-50) to 30 (30-39) % (p < 0.001) during IntelliVent-ASV(®) as compared to ASV. RR, P(INSP), and PEEP decreased as well during IntelliVent-ASV(®) as compared to ASV. Respiratory mechanics, pH, PaO(2) and PaO(2)/FiO(2) ratio were not different but PaCO(2) was slightly higher during IntelliVent-ASV(®) as compared to ASV. CONCLUSIONS In passive patients with acute respiratory failure, IntelliVent-ASV(®) was safe and able to ventilate patients with less pressure, volume and FiO(2) while producing the same results in terms of oxygenation.
Collapse
Affiliation(s)
- Jean-Michel Arnal
- Intensive Care Unit, Hôpital Font Pré, 1208 avenue du colonel Picot, 83100, Toulon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW New developments in mechanical ventilation have focused on increasing the patient's control of the ventilator by implementing information on lung mechanics and respiratory drive. Effort-adapted modes of assisted breathing are presented and their potential advantages are discussed. RECENT FINDINGS Adaptive support ventilation, proportional assist ventilation with load adjustable gain factors and neurally adjusted ventilatory assist are ventilatory modes that follow the concept of adapting the assist to a defined target, instantaneous changes in respiratory drive or lung mechanics. Improved patient ventilator interaction, sufficient unloading of the respiratory muscles and increased comfort have been recently associated with these ventilator modalities. There are, however, scarce data with regard to outcome improvement, such as length of mechanical ventilation, ICU stay or mortality (commonly accepted targets to demonstrate clinical superiority). SUMMARY Within recent years, a major step forward in the evolution of assisted (effort-adapted) modes of mechanical ventilation was accomplished. There is growing evidence that supports the physiological concept of closed-loop effort-adapted assisted modes of mechanical ventilation. However, at present, the translation into a clear outcome benefit remains to be proven. In order to fill the knowledge gap that impedes the broader application, larger randomized controlled trials are urgently needed. However, with clearly proven drawbacks of conventional assisted modes such as pressure support ventilation, it is probably about time to leave these modes introduced decades ago behind.
Collapse
|
16
|
Lipes J, Bojmehrani A, Lellouche F. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation. Crit Care Res Pract 2012; 2012:416862. [PMID: 22536499 PMCID: PMC3318889 DOI: 10.1155/2012/416862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 01/11/2023] Open
Abstract
Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.
Collapse
Affiliation(s)
- Jed Lipes
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, QC, Canada G1V 4G5
- Department of Adult Critical Care, Jewish General Hospital, McGill University, Montreal, QC, Canada H3T 1E2
| | - Azadeh Bojmehrani
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, QC, Canada G1V 4G5
| | - Francois Lellouche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, QC, Canada G1V 4G5
| |
Collapse
|
17
|
|
18
|
|
19
|
Antonelli M, Azoulay E, Bonten M, Chastre J, Citerio G, Conti G, De Backer D, Gerlach H, Hedenstierna G, Joannidis M, Macrae D, Mancebo J, Maggiore SM, Mebazaa A, Preiser JC, Pugin J, Wernerman J, Zhang H. Year in review in Intensive Care Medicine 2010: III. ARDS and ALI, mechanical ventilation, noninvasive ventilation, weaning, endotracheal intubation, lung ultrasound and paediatrics. Intensive Care Med 2011; 37:394-410. [PMID: 21290103 PMCID: PMC3042109 DOI: 10.1007/s00134-011-2136-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
Affiliation(s)
- Massimo Antonelli
- Department of Intensive Care and Anesthesiology, Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee KS, Chung WY, Jung YJ, Park JH, Sheen SS, Hwang SC, Park KJ. Evaluation of Respiratory Parameters in Patients with Acute Lung Injury Receiving Adaptive Support Ventilation. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Keu Sung Lee
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Wou Young Chung
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Yun Jung Jung
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Seung Soo Sheen
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Sung Chul Hwang
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Joo Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
21
|
Brochard L. Le point sur la ventilation mécanique invasive — Les nouveaux modes automatisés. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-010-0027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|