1
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
2
|
Dexamethasone concentration affecting rocuronium-induced neuromuscular blockade and sugammadex reversal in a rat phrenic nerve-hemidiaphragm model: An ex vivo study. Eur J Anaesthesiol 2019; 35:856-862. [PMID: 30045055 DOI: 10.1097/eja.0000000000000866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The concentration range of dexamethasone that inhibits neuromuscular blockade (NMB) and sugammadex reversal remains unclear. OBJECTIVE To evaluate the effects of dexamethasone on rocuronium-induced NMB and sugammadex reversal. DESIGN Ex vivo study. SETTING Asan Institute for Life Sciences, Asan Medical Center, Korea, from July 2015 to November 2015. ANIMALS One hundred sixty male Sprague-Dawley rats. INTERVENTIONS We assessed the effect of four concentrations of dexamethasone [0, 0.5, 5 (clinical concentrations) and 50 μg ml (experimental concentration)] on partial NMB on 40 phrenic nerve-hemidiaphragm preparations (n=10 per concentration). Once the first twitch of train-of-four (TOF) had been depressed by 50% with rocuronium, dexamethasone was administered. To assess the effect of dexamethasone on sugammadex reversal, 120 phrenic nerve-hemidiaphragm preparations were used in three subexperiments (n=40 per experiment), using three administration regimens of rocuronium-equimolar sugammadex: a single dose, a split-dose (split and ) and a reduced split-dose (split and ). After complete NMB was achieved, dexamethasone and sugammadex were administered. MAIN OUTCOME MEASURES The change in the first twitch height, the recovery time to a TOF ratio at least 0.9, and the TOF ratio at 30 min were evaluated. RESULTS There were no significant differences in the first twitch height among groups (P = 0.532). With a single dose of sugammadex, dexamethasone did not affect the recovery time to a TOF ratio at least 0.9 (P = 0.070). After using a split-dose of sugammadex, the recovery time to a TOF ratio at least 0.9 was delayed only at a concentration of 50 μg ml of dexamethasone. With a reduced split-dose of sugammadex, the TOF ratio at 30 min was lowered only by a concentration of 50 μg ml of dexamethasone (P < 0.010). CONCLUSION Acute bolus administration of dexamethasone at clinical concentrations had no effect on NMB or on sugammadex reversal.
Collapse
|
3
|
Choi H, Park SY, Kim YB, In J, Yang HS, Lee JS, Kim S, Park S. Effects of dexamethasone and hydrocortisone on rocuroniuminduced neuromuscular blockade and reversal by sugammadex in phrenic nerve-hemidiaphragm rat model. Korean J Anesthesiol 2019; 72:366-374. [PMID: 30886132 PMCID: PMC6676030 DOI: 10.4097/kja.d.18.00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background The facilitator effects of steroids on neuromuscular transmission may cause resistance to neuromuscular blocking agents. Additionally, steroids may hinder sugammadex reversal of neuromuscular blockade, but these findings remain controversial. Therefore, we explored the effect of dexamethasone and hydrocortisone on rocuronium-induced neuromuscular blockade and their inhibitory effect on sugammadex. Methods We explored the effects of steroids, dexamethasone and hydrocortisone, in vitro using a phrenic nerve-hemidiaphragm rat model. In the first phase, an effective dose of rocuronium was calculated, and in the second phase, following sugammadex administration, the recovery of the train-of-four (TOF) ratio and T1 was evaluated for 30 minutes, and the recovery index was calculated in dexamethasone 0, 0.5, 5, and 50 μg/ml, or hydrocortisone 0, 1, 10, or 100 μg/ml. Results No significant effect of steroids on the effective dose of rocuronium was observed. The TOF ratios at 30 minutes after sugammadex administration were decreased significantly only at high experimental concentrations of steroids: dexamethasone 50 μg/ml and hydrocortisone 100 μg/ml (P < 0.001 and P = 0.042, respectively). There were no statistical significances in other concentrations. No differences were observed in T1. Recovery index was significantly different only in 100 μg/ml of hydrocortisone (P = 0.03). Conclusions Acute exposure to steroids did not resist the neuromuscular blockade caused by rocuronium. And inhibition of sugammadex reversal on rocuronium-induced neuromuscular blockade is unlikely at typical clinical doses of dexamethasone and also hydrocortisone. Conclusively, we can expect proper effects of rocuronium and sugammadex when dexamethasone or hydrocortisone is used during general anesthesia.
Collapse
Affiliation(s)
- Heyran Choi
- Department of Anesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Korea.,Neuromuscular Physiology Research Team at the Laboratory of Animal Research, Asan Institute of Life Science, Seoul, Korea
| | - Sun Young Park
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Neuromuscular Physiology Research Team at the Laboratory of Animal Research, Asan Institute of Life Science, Seoul, Korea
| | - Yong Beom Kim
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Neuromuscular Physiology Research Team at the Laboratory of Animal Research, Asan Institute of Life Science, Seoul, Korea
| | - Junyong In
- Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea.,Neuromuscular Physiology Research Team at the Laboratory of Animal Research, Asan Institute of Life Science, Seoul, Korea
| | - Hong Seuk Yang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Neuromuscular Physiology Research Team at the Laboratory of Animal Research, Asan Institute of Life Science, Seoul, Korea
| | - Jeong-Seok Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sanghyun Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University College of Medicine, Asan, Korea
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize and discuss recent research regarding the role of mechanical ventilation in producing weakness and atrophy of the diaphragm in critically ill patients, an entity termed ventilator-induced diaphragmatic dysfunction (VIDD). RECENT FINDINGS Severe weakness of the diaphragm is frequent in mechanically ventilated patients, in whom it contributes to poor outcomes including increased mortality. Significant progress has been made in identifying the molecular mechanisms responsible for VIDD in animal models, and there is accumulating evidence for occurrence of the same cellular processes in the diaphragms of human patients undergoing prolonged mechanical ventilation. SUMMARY Recent research is pointing the way to novel pharmacologic therapies as well as nonpharmacologic methods for preventing VIDD. The next major challenge in the field will be to move these findings from the bench to the bedside in critically ill patients.
Collapse
|
5
|
Wilcox SR. Corticosteroids and neuromuscular blockers in development of critical illness neuromuscular abnormalities: A historical review. J Crit Care 2016; 37:149-155. [PMID: 27736708 DOI: 10.1016/j.jcrc.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
Abstract
Weakness is common in critically ill patients, associated with prolonged mechanical ventilation and increased mortality. Corticosteroids and neuromuscular blockade (NMB) administration have been implicated as etiologies of acquired weakness in the intensive care unit. Medical literature since the 1970s is replete with case reports and small case series of patients with weakness after receiving high-dose corticosteroids, prolonged NMB, or both. Several risk factors for weakness appear in the early literature, including large doses of steroids, the dose and duration of NMB, hyperglycemia, and the duration of mechanical ventilation. With improved quality of data, however, the association between weakness and steroids or NMB wanes. This may reflect changes in clinical practice, such as a reduction in steroid dosing, use of cisatracurium besylate instead of aminosteroid NMBs, improved glycemic control, or trends in minimizing mechanical ventilatory support. Thus, based on the most recent and high-quality literature, neither corticosteroids in commonly used doses nor NMB is associated with increased duration of mechanical ventilation, the greatest morbidity of weakness. Minimizing ventilator support as soon as the patient's condition allows may be associated with a reduction in weakness-related morbidity.
Collapse
Affiliation(s)
- Susan R Wilcox
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and Division of Emergency Medicine, Department of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
6
|
Dexamethasone decreases the duration of rocuronium-induced neuromuscular block: a randomised controlled study. Eur J Anaesthesiol 2015; 31:417-22. [PMID: 24136379 DOI: 10.1097/eja.0b013e328365c9ee] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several drugs influence the time course of neuromuscular block during general anaesthesia. OBJECTIVE To evaluate the effect of a single dose of dexamethasone 8 mg on the time course of a rocuronium-induced neuromuscular block. DESIGN A randomised controlled, unblinded, monocentre trial. SETTING Kreiskrankenhaus Dormagen, Dormagen, Germany. PATIENTS One hundred and eight adult patients scheduled for elective gynaecological laparoscopic surgery allocated to three groups. INTERVENTIONS Patients received dexamethasone 8 mg intravenously 2 to 3 h prior to surgery (Group A), during induction of anaesthesia (Group B) or after recovery of the neuromuscular block (Group C, control). MAIN OUTCOME MEASURES The time course of the neuromuscular block of rocuronium 0.3 mg kg was assessed using acceleromyography. The primary end point was the time from start of injection of rocuronium until recovery to a train-of-four ratio of 0.9. RESULTS The clinical duration was decreased in Group A (15.8 ± 4.5 min) compared with Group B (18.7 ± 5.8 min; P = 0.031). The recovery index was reduced in Group A (6.8 ± 1.8 min) compared with Group B (8.1 ± 2.6 min; P = 0.018) and Group C (8.3 ± 2.8 min; P = 0.01). The recovery to a train-of-four ratio of 0.9 was shorter in Group A (30.4 ± 6.9 min) than in Groups B (36.3 ± 10.7 min; P = 0.031) and C (36.8 ± 11.3 min; P = 0.02). CONCLUSION A single dose of dexamethasone 8 mg attenuated rocuronium-induced block by 15 to 20% if administered 2 to 3 h prior to induction of anaesthesia. However, the administration of dexamethasone during induction of anaesthesia did not influence the time course of the neuromuscular block. TRIAL REGISTRATION ClinicalTrial.gov Identifier: NCT01782820.
Collapse
|
7
|
Bruells CS, Marx G, Rossaint R. [Ventilator-induced diaphragm dysfunction : clinically relevant problem]. Anaesthesist 2015; 63:47-53. [PMID: 24306096 DOI: 10.1007/s00101-013-2248-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mechanical ventilation is a life-saving intervention for patients with respiratory failure or during deep sedation. During continuous mandatory ventilation the diaphragm remains inactive, which activates pathophysiological cascades leading to a loss of contractile force and muscle mass (collectively referred to as ventilator-induced diaphragm dysfunction, VIDD). In contrast to peripheral skeletal muscles this process is rapid and develops after as little as 12 h and has a profound influence on weaning patients from mechanical ventilation as well as increased incidences of morbidity and mortality. In recent years, animal experiments have revealed pathophysiological mechanisms which have been confirmed in humans. One major mechanism is the mitochondrial generation of reactive oxygen species that have been shown to damage contractile proteins and facilitate protease activation. Besides atrophy due to inactivity, drug interactions can induce further muscle atrophy. Data from animal research concerning the influence of corticosteroids emphasize a dose-dependent influence on diaphragm atrophy and function although the clinical interpretation in intensive care patients (ICU) patients might be difficult. Levosimendan has also been proven to increase diaphragm contractile forces in humans which may prove to be helpful for patients experiencing difficult weaning. Additionally, antioxidant drugs that scavenge reactive oxygen species have been demonstrated to protect the diaphragm from VIDD in several animal studies. The translation of these drugs into the IUC setting might protect patients from VIDD and facilitate the weaning process.
Collapse
Affiliation(s)
- C S Bruells
- Klinik für Operative Intensivmedizin und Intermediate Care, Universitätsklinikum der RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland,
| | | | | |
Collapse
|
8
|
Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology 2014; 120:665-72. [PMID: 24401770 DOI: 10.1097/aln.0000000000000125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mechanical ventilation is crucial for patients with respiratory failure. The mechanical takeover of diaphragm function leads to diaphragm dysfunction and atrophy (ventilator-induced diaphragmatic dysfunction), with an increase in oxidative stress as a major contributor. In most patients, a sedative regimen has to be initiated to allow tube tolerance and ventilator synchrony. Clinical data imply a correlation between cumulative propofol dosage and diaphragm dysfunction, whereas laboratory investigations have revealed that propofol has some antioxidant properties. The authors hypothesized that propofol reduces markers of oxidative stress, atrophy, and contractile dysfunction in the diaphragm. METHODS Male Wistar rats (n = 8 per group) were subjected to either 24 h of mechanical ventilation or were undergone breathing spontaneously for 24 h under propofol sedation to test for drug effects. Another acutely sacrificed group served as controls. After sacrifice, diaphragm tissue was removed, and contractile properties, cross-sectional areas, oxidative stress, and proteolysis were examined. The gastrocnemius served as internal control. RESULTS Propofol did not protect against diaphragm atrophy, oxidative stress, and protease activation. The decrease in tetanic force compared with controls was similar in the spontaneous breathing group (31%) and in the ventilated group (34%), and both groups showed the same amount of muscle atrophy. The gastrocnemius muscle fibers did not show atrophy. CONCLUSIONS Propofol does not protect against ventilator-induced diaphragmatic dysfunction or oxidative injury. Notably, spontaneous breathing under propofol sedation resulted in the same amount of diaphragm atrophy and dysfunction although diaphragm activation per se protects against ventilator-induced diaphragmatic dysfunction. This makes a drug effect of propofol likely.
Collapse
|
9
|
Price D, Kenyon NJ, Stollenwerk N. A fresh look at paralytics in the critically ill: real promise and real concern. Ann Intensive Care 2012; 2:43. [PMID: 23062076 PMCID: PMC3519794 DOI: 10.1186/2110-5820-2-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/17/2012] [Indexed: 01/20/2023] Open
Abstract
Neuromuscular blocking agents (NMBAs), or “paralytics,” often are deployed in the sickest patients in the intensive care unit (ICU) when usual care fails. Despite the publication of guidelines on the use of NMBAs in the ICU in 2002, clinicians have needed more direction to determine which patients would benefit from NMBAs and which patients would be harmed. Recently, new evidence has shown that paralytics hold more promise when used in carefully selected lung injury patients for brief periods of time. When used in early acute respiratory distress syndrome (ARDS), NMBAs assist to establish a lung protective strategy, which leads to improved oxygenation, decreased pulmonary and systemic inflammation, and potentially improved mortality. It also is increasingly recognized that NMBAs can cause harm, particularly critical illness polyneuromyopathy (CIPM), when used for prolonged periods or in septic shock. In this review, we address several practical considerations for clinicians who use NMBAs in their practice. Ultimately, we conclude that NMBAs should be considered a lung protective adjuvant in early ARDS and that clinicians should consider using an alternative NMBA to the aminosteroids in septic shock with less severe lung injury pending further studies.
Collapse
Affiliation(s)
- David Price
- Division of Pulmonary, Critical Care and Sleep Medicine, Univ, of California, Davis, 4150V, Street, Suite 3400, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
10
|
Antonelli M, Bonten M, Chastre J, Citerio G, Conti G, Curtis JR, De Backer D, Hedenstierna G, Joannidis M, Macrae D, Mancebo J, Maggiore SM, Mebazaa A, Preiser JC, Rocco P, Timsit JF, Wernerman J, Zhang H. Year in review in Intensive Care Medicine 2011: I. Nephrology, epidemiology, nutrition and therapeutics, neurology, ethical and legal issues, experimentals. Intensive Care Med 2012; 38:192-209. [PMID: 22215044 PMCID: PMC3291847 DOI: 10.1007/s00134-011-2447-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Massimo Antonelli
- Department of Intensive Care and Anesthesiology, Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|