1
|
Vizcaychipi MP, Karbing DS, Martins L, Gupta A, Moreno-Cuesta J, Naik M, Welters I, Singh S, Randell G, Osman L, Rees SE. Evaluation of decision support to wean patients from mechanical ventilation in intensive care: a prospective study reporting clinical and physiological outcomes. J Clin Monit Comput 2024:10.1007/s10877-024-01231-5. [PMID: 39520605 DOI: 10.1007/s10877-024-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the clinical and physiological response to use of the BEACON Caresystem, a bedside open-loop decision support system providing advice to guide clinicians when weaning patients from invasive mechanical ventilation. Multicenter prospective study conducted in five adult intensive care units in the UK. Following screening and assent, intubated patients mechanically ventilated for > 24 h were randomized to intervention or usual care. Intervention consisted of application of the BEACON Caresystem's advice on tidal volume/inspiratory pressure, inspired oxygen, respiratory rate and PEEP. Usual care was defined as local clinical practice. The primary outcome was duration of mechanical ventilation. Secondary outcomes quantified prolonged intubation and survival; adverse events; ventilator settings and physiological state; time spent in ventilator modes; links to other therapy; the frequency of advice utilization and time spent outside normal physiological limits. The study was terminated early with a total of 112 patients included. Fifty-four were randomised to the intervention arm and fifty-eight to usual care. The study was underpowered and no significant differences were seen in duration of mechanical ventilation (p = 0.773), prolonged intubation or survival. Intervention arm patients had lower rates of adverse events (p = 0.016), including fewer hypoxaemic events (p = 0.008) and lower values of PEEP (p = 0.030) and tidal volume (p = 0.042). Values of peak inspiratory pressure and pressure support were reduced but at the boarder of statistical significance (p = 0.104, p = 0.093, respectively). No differences were seen for time in ventilator mode or other therapy. Advice presented by the decision support system was applied at the beside an average of 88% of occasions, with a significantly increased number of changes only in inspired oxygen fraction. No significant differences were seen in time spent outside physiological limits. This study investigated the use of the BEACON Caresystem, an open loop clinical decision support system providing advice on ventilator settings. It was terminated early, with no significant difference shown in duration of mechanical ventilation, the primary outcome. Application of advice indicated potential for fewer adverse events and improved physiological status. (Trial registration ClinicalTrials.gov under NCT03249623. Registered 22nd June 2017).
Collapse
Affiliation(s)
- Marcela P Vizcaychipi
- Magill Department of Anaesthesia and Intensive Care Medicine, Chelsea and Westminster Hospital, APMIC, Surgery & Cancer, Imperial College London, London, UK
| | - Dan S Karbing
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Laura Martins
- Research and Development Delivery Team, Chelsea & Westminster Hospital, London, UK
| | - Amandeep Gupta
- Intensive Care Unit, West Middlesex University Hospital, London, UK
| | | | - Manu Naik
- Norwich and Norfolk University Hospital Foundation Trust, Norwich, UK
| | - Ingeborg Welters
- Intensive Care Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Suveer Singh
- Magill Department of Anaesthesia and Intensive Care Medicine, Chelsea and Westminster Hospital, APMIC, Surgery & Cancer, Imperial College London, London, UK
| | - Georgina Randell
- Norwich and Norfolk University Hospital Foundation Trust, Norwich, UK
| | | | - Stephen E Rees
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Tatlisuluoglu D, Alay GH, Turan G. A Prospective Randomized Comparison of INTELLIVENT-ASV and PSV Modes in Terms of Weaning in Intensive Care Patients, Istanbul, Turkiye. Niger J Clin Pract 2024; 27:1260-1265. [PMID: 39627666 DOI: 10.4103/njcp.njcp_194_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/01/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND INTELLIVENT-Adaptive Support Ventilation (I-ASV; C6; Hamilton Medical; Bonaduz, Switzerland) is a closed-loop ventilation mode that continuously controls the patient's ventilation and oxygenation. It sets the minute ventilation, PEEP, and oxygen levels based on the targets set by the clinician and on physiological input from the patient. AIM The aim was to compare I-ASV and PSV modes regarding weaning in intensive care patients. METHODS A total of 140 patients who were over the age of 18 years, did not have a neuromuscular disease, and had been ventilated for at least 48 hours were reviewed. Using the sequential method, patients who met the requirements for weaning were put into two groups: I-ASV and PSV (pressure support ventilation). RESULTS The mean age of the I-ASV group (n = 70) and the PSV group (n = 70) was 49.11 ± 17.74 and 49.92 ± 22.00, respectively. In the group using I-ASV, FiO2 was 30.12 ± 10.04%, inspiratory pressure (Pinsp) was 8.71 ± 2.78 cm H2O, and Ppeak value was 11.67 ± 2.78 cm H2O, which were significantly lower than those in the PSV mode (P < 0.001). The PEEP value was significantly lower in the PSV mode (P < 0.001). However, asynchrony-tachycardia was significantly higher in the I-ASV group (28 (20%)) compared to the PSV group (11 (7.9%)) (P < 0.003). CONCLUSION I-ASV mode had no effect on weaning duration compared to PSV mode but decreased PEEP, FiO2, Pinsp, and Ppeak values in weaning patients.
Collapse
Affiliation(s)
- D Tatlisuluoglu
- Department of Intensive Care Unit, Basaksehir Cam and Sakura Training and Research City Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
3
|
Atakul G, Ceylan G, Sandal O, Soydan E, Hepduman P, Colak M, Zimmermann JM, Novotni D, Karaarslan U, Topal S, Aǧin H. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne) 2024; 11:1426969. [PMID: 39318593 PMCID: PMC11420134 DOI: 10.3389/fmed.2024.1426969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Background The aim of this study is the evaluation of a closed-loop oxygen control system in pediatric patients undergoing invasive mechanical ventilation (IMV). Methods Cross-over, multicenter, randomized, single-blind clinical trial. Patients between the ages of 1 month and 18 years who were undergoing IMV therapy for acute hypoxemic respiratory failure (AHRF) were assigned at random to either begin with a 2-hour period of closed-loop oxygen control or manual oxygen titrations. By using closed-loop oxygen control, the patients' SpO2 levels were maintained within a predetermined target range by the automated adjustment of the FiO2. During the manual oxygen titration phase of the trial, healthcare professionals at the bedside made manual changes to the FiO2, while maintaining the same target range for SpO2. Following either period, the patient transitioned to the alternative therapy. The outcomes were the percentage of time spent in predefined SpO2 ranges ±2% (primary), FiO2, total oxygen use, and the number of manual adjustments. Findings The median age of included 33 patients was 17 (13-55.5) months. In contrast to manual oxygen titrations, patients spent a greater proportion of time within a predefined optimal SpO2 range when the closed-loop oxygen controller was enabled (95.7% [IQR 92.1-100%] vs. 65.6% [IQR 41.6-82.5%]), mean difference 33.4% [95%-CI 24.5-42%]; P < 0.001). Median FiO2 was lower (32.1% [IQR 23.9-54.1%] vs. 40.6% [IQR 31.1-62.8%]; P < 0.001) similar to total oxygen use (19.8 L/h [IQR 4.6-64.8] vs. 39.4 L/h [IQR 16.8-79]; P < 0.001); however, median SpO2/FiO2 was higher (329.4 [IQR 180-411.1] vs. 246.7 [IQR 151.1-320.5]; P < 0.001) with closed-loop oxygen control. With closed-loop oxygen control, the median number of manual adjustments reduced (0.0 [IQR 0.0-0.0] vs. 1 [IQR 0.0-2.2]; P < 0.001). Conclusion Closed-loop oxygen control enhances oxygen therapy in pediatric patients undergoing IMV for AHRF, potentially leading to more efficient utilization of oxygen. This technology also decreases the necessity for manual adjustments, which could reduce the workloads of healthcare providers. Clinical Trial Registration This research has been submitted to ClinicalTrials.gov (NCT05714527).
Collapse
Affiliation(s)
- Gulhan Atakul
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Gokhan Ceylan
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Ozlem Sandal
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Ekin Soydan
- Department of Paediatric Intensive Care Unit, Aydin Obstetrics and Children Hospital, Health Sciences University, Aydin, Türkiye
| | - Pinar Hepduman
- Department of Paediatric Intensive Care Unit, Erzurum Territorial Training and Research Hospital, Health Sciences University, Erzurum, Türkiye
| | - Mustafa Colak
- Department of Paediatric Intensive Care Unit, Cam Sakura Training and Research Hospital, Health Sciences University, Istanbul, Türkiye
| | - Jan M Zimmermann
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Dominik Novotni
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Utku Karaarslan
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Sevgi Topal
- Department of Paediatric Intensive Care Unit, Erzurum Territorial Training and Research Hospital, Health Sciences University, Erzurum, Türkiye
| | - Hasan Aǧin
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| |
Collapse
|
4
|
Mól CG, Vieira AGDS, Garcia BMSP, dos Santos Pereira E, Eid RAC, Schultz MJ, Pinto ACPN, Nawa RK. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One 2024; 19:e0304745. [PMID: 38865428 PMCID: PMC11168613 DOI: 10.1371/journal.pone.0304745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The impact of closed-loop control systems to titrate oxygen flow in critically ill patients, including their effectiveness, efficacy, workload and safety, remains unclear. This systematic review investigated the utilization of closed-loop oxygen systems for critically ill patients in comparison to manual oxygen titration systems focusing on these topics. METHODS AND FINDINGS A search was conducted across several databases including MEDLINE, CENTRAL, EMBASE, LILACS, CINAHL, LOVE, ClinicalTrials.gov, and the World Health Organization on March 3, 2022, with subsequent updates made on June 27, 2023. Evidence databases were searched for randomized clinical parallel or crossover studies investigating closed-loop oxygen control systems for critically ill patients. This systematic review and meta-analysis was performed following the Preferred Reporting Items for Systematic Review and Meta-analysis guidelines. The analysis was conducted using Review Manager software, adopting the mean difference or standardized mean difference with a 95% confidence interval (95% CI) for continuous variables or risk ratio with 95% CI for dichotomous outcomes. The main outcome of interest was the percentage of time spent in the peripheral arterial oxygen saturation target. Secondary outcomes included time for supplemental oxygen weaning, length of stay, mortality, costs, adverse events, and workload of healthcare professional. A total of 37 records from 21 studies were included in this review with a total of 1,577 participants. Compared with manual oxygen titration, closed-loop oxygen control systems increased the percentage of time in the prescribed SpO2 target, mean difference (MD) 25.47; 95% CI 19.7, 30.0], with moderate certainty of evidence. Current evidence also shows that closed-loop oxygen control systems have the potential to reduce the percentage of time with hypoxemia (MD -0.98; 95% CI -1.68, -0.27) and healthcare workload (MD -4.94; 95% CI -7.28, -2.61) with low certainty of evidence. CONCLUSION Closed-loop oxygen control systems increase the percentage of time in the preferred SpO2 targets and may reduce healthcare workload. TRIAL REGISTRATION PROSPERO: CRD42022306033.
Collapse
Affiliation(s)
- Caroline Gomes Mól
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Mahidol–Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria
| | | | - Ricardo Kenji Nawa
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Goossen RL, Schultz MJ, Tschernko E, Chew MS, Robba C, Paulus F, van der Heiden PLJ, Buiteman-Kruizinga LA. Effects of closed loop ventilation on ventilator settings, patient outcomes and ICU staff workloads - a systematic review. Eur J Anaesthesiol 2024; 41:438-446. [PMID: 38385449 PMCID: PMC11064903 DOI: 10.1097/eja.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Lung protective ventilation is considered standard of care in the intensive care unit. However, modifying the ventilator settings can be challenging and is time consuming. Closed loop modes of ventilation are increasingly attractive for use in critically ill patients. With closed loop ventilation, settings that are typically managed by the ICU professionals are under control of the ventilator's algorithms. OBJECTIVES To describe the effectiveness, safety, efficacy and workload with currently available closed loop ventilation modes. DESIGN Systematic review of randomised clinical trials. DATA SOURCES A comprehensive systematic search in PubMed, Embase and the Cochrane Central register of Controlled Trials search was performed in January 2023. ELIGIBILITY CRITERIA Randomised clinical trials that compared closed loop ventilation with conventional ventilation modes and reported on effectiveness, safety, efficacy or workload. RESULTS The search identified 51 studies that met the inclusion criteria. Closed loop ventilation, when compared with conventional ventilation, demonstrates enhanced management of crucial ventilator variables and parameters essential for lung protection across diverse patient cohorts. Adverse events were seldom reported. Several studies indicate potential improvements in patient outcomes with closed loop ventilation; however, it is worth noting that these studies might have been underpowered to conclusively demonstrate such benefits. Closed loop ventilation resulted in a reduction of various aspects associated with the workload of ICU professionals but there have been no studies that studied workload in sufficient detail. CONCLUSIONS Closed loop ventilation modes are at least as effective in choosing correct ventilator settings as ventilation performed by ICU professionals and have the potential to reduce the workload related to ventilation. Nevertheless, there is a lack of sufficient research to comprehensively assess the overall impact of these modes on patient outcomes, and on the workload of ICU staff.
Collapse
Affiliation(s)
- Robin L Goossen
- From the Department of Intensive Care, Amsterdam University Medical Centres, location 'AMC', Amsterdam, the Netherlands (RLG, MJS, FP, LAB-K), Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand (MJS), Nuffield Department of Medicine, University of Oxford, Oxford, UK (MJS), Department of Anaesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria (MJS, ET), Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (MSC), Unit of Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy (CR), ACHIEVE, Centre of Applied Research, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam (FP), Department of Intensive Care, Reinier de Graaf Hospital, Delft, the Netherlands (PL.J.H, LAB-K)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nijbroek SGLH, Roozeman JP, Ettayeby S, Rosenberg NM, van Meenen DMP, Cherpanath TGV, Lagrand WK, Tepaske R, Klautz RJM, Serpa Neto A, Schultz MJ. Closed-Loop ventilation using sidestream versus mainstream capnography for automated adjustments of minute ventilation-A randomized clinical trial in cardiac surgery patients. PLoS One 2023; 18:e0289412. [PMID: 37611007 PMCID: PMC10446221 DOI: 10.1371/journal.pone.0289412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop ventilation mode that uses capnography to adjust tidal volume (VT) and respiratory rate according to a user-set end-tidal CO2 (etCO2) target range. We compared sidestream versus mainstream capnography with this ventilation mode with respect to the quality of breathing in patients after cardiac surgery. METHODS Single-center, single-blinded, non-inferiority, randomized clinical trial in adult patients scheduled for elective cardiac surgery that were expected to receive at least two hours of postoperative ventilation in the ICU. Patients were randomized 1:1 to closed-loop ventilation with sidestream or mainstream capnography. Each breath was classified into a zone based on the measured VT, maximum airway pressure, etCO2 and pulse oximetry. The primary outcome was the proportion of breaths spent in a predefined 'optimal' zone of ventilation during the first three hours of postoperative ventilation, with a non-inferiority margin for the difference in the proportions set at -20%. Secondary endpoints included the proportion of breaths in predefined 'acceptable' and 'critical' zones of ventilation, and the proportion of breaths with hypoxemia. RESULTS Of 80 randomized subjects, 78 were included in the intention-to-treat analysis. We could not confirm the non-inferiority of closed-loop ventilation using sidestream with respect to the proportion of breaths in the 'optimal' zone (mean ratio 0.87 [0.77 to ∞]; P = 0.116 for non-inferiority). The proportion of breaths with hypoxemia was higher in the sidestream capnography group versus the mainstream capnography group. CONCLUSIONS We could not confirm that INTELLiVENT-ASV using sidestream capnography is non-inferior to INTELLiVENT-ASV using mainstream capnography with respect to the quality of breathing in subjects receiving postoperative ventilation after cardiac surgery. TRIAL REGISTRATION NCT04599491 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Sunny G. L. H. Nijbroek
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Jan-Paul Roozeman
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Sarah Ettayeby
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Neeltje M. Rosenberg
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Internal Medicine, Spaarne Hospital, Haarlem, The Netherlands
| | - David M. P. van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Thomas G. V. Cherpanath
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Wim K. Lagrand
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Robert Tepaske
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Robert J. M. Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Australian and New Zealand Intensive Care Research Centre (ANZIC–RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Critical Care, Austin Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paolo, Brazil
| | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Alay GH, Tatlisuluoglu D, Turan G. Evaluation of IntelliVent-ASV® and PS-SIMV Mode Using Ultrasound (US) Measurements in Terms of Diaphragm Atrophy. Cureus 2023; 15:e40244. [PMID: 37309540 PMCID: PMC10257811 DOI: 10.7759/cureus.40244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a life-saving intervention for critically ill patients, but it can also lead to diaphragm atrophy, which may prolong the duration of mechanical ventilation and the length of stay in the intensive care unit. IntelliVent-ASV® (Hamilton Medical, Rhäzüns, Switzerland) is a new mode of ventilation that has been developed to reduce diaphragm atrophy by promoting spontaneous breathing efforts. In this study, we aimed to evaluate the effectiveness of IntelliVent-ASV® and pressure support-synchronized intermittent mandatory ventilation (PS-SIMV) mode in reducing diaphragm atrophy by measuring diaphragm thickness using ultrasound (US) imaging. METHODS We enrolled 60 patients who required mechanical ventilation due to respiratory failure and were randomized into two groups: IntelliVent-ASV® and PS-SIMV. We measured the diaphragm thickness using US imaging at admission and on the seventh day of mechanical ventilation. RESULTS Our results showed that diaphragm thickness decreased significantly in the PS-SIMV group but remained unchanged in the IntelliVent-ASV® group. The difference in diaphragm thickness between the two groups was statistically significant on the seventh day of mechanical ventilation. CONCLUSIONS IntelliVent-ASV® may reduce diaphragm atrophy by promoting spontaneous breathing efforts. Our study suggests that this new mode of ventilation may be a promising approach to preventing diaphragm atrophy in mechanically ventilated patients. Further studies using invasive measures of diaphragm function are warranted to confirm these findings.
Collapse
Affiliation(s)
- Gulcin Hilal Alay
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Derya Tatlisuluoglu
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Guldem Turan
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| |
Collapse
|
8
|
Sandal O, Ceylan G, Topal S, Hepduman P, Colak M, Novotni D, Soydan E, Karaarslan U, Atakul G, Schultz MJ, Ağın H. Closed–loop oxygen control improves oxygenation in pediatric patients under high–flow nasal oxygen—A randomized crossover study. Front Med (Lausanne) 2022; 9:1046902. [DOI: 10.3389/fmed.2022.1046902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundWe assessed the effect of a closed–loop oxygen control system in pediatric patients receiving high–flow nasal oxygen therapy (HFNO).MethodsA multicentre, single–blinded, randomized, and cross–over study. Patients aged between 1 month and 18 years of age receiving HFNO for acute hypoxemic respiratory failure (AHRF) were randomly assigned to start with a 2–h period of closed–loop oxygen control or a 2–h period of manual oxygen titrations, after which the patient switched to the alternative therapy. The endpoints were the percentage of time spent in predefined SpO2 ranges (primary), FiO2, SpO2/FiO2, and the number of manual adjustments.FindingsWe included 23 patients, aged a median of 18 (3–26) months. Patients spent more time in a predefined optimal SpO2 range when the closed–loop oxygen controller was activated compared to manual oxygen titrations [91⋅3% (IQR 78⋅4–95⋅1%) vs. 63⋅0% (IQR 44⋅4–70⋅7%)], mean difference [28⋅2% (95%–CI 20⋅6–37⋅8%); P < 0.001]. Median FiO2 was lower [33⋅3% (IQR 26⋅6–44⋅6%) vs. 42⋅6% (IQR 33⋅6–49⋅9%); P = 0.07], but median SpO2/FiO2 was higher [289 (IQR 207–348) vs. 194 (IQR 98–317); P = 0.023] with closed–loop oxygen control. The median number of manual adjustments was lower with closed–loop oxygen control [0⋅0 (IQR 0⋅0–0⋅0) vs. 0⋅5 (IQR 0⋅0–1⋅0); P < 0.001].ConclusionClosed-loop oxygen control improves oxygenation therapy in pediatric patients receiving HFNO for AHRF and potentially leads to more efficient oxygen use. It reduces the number of manual adjustments, which may translate into decreased workloads of healthcare providers.Clinical trial registration[www.ClinicalTrials.gov], identifier [NCT 05032365].
Collapse
|
9
|
Closed-Loop Controlled Fluid Administration Systems: A Comprehensive Scoping Review. J Pers Med 2022; 12:jpm12071168. [PMID: 35887665 PMCID: PMC9315597 DOI: 10.3390/jpm12071168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Physiological Closed-Loop Controlled systems continue to take a growing part in clinical practice, offering possibilities of providing more accurate, goal-directed care while reducing clinicians’ cognitive and task load. These systems also provide a standardized approach for the clinical management of the patient, leading to a reduction in care variability across multiple dimensions. For fluid management and administration, the advantages of closed-loop technology are clear, especially in conditions that require precise care to improve outcomes, such as peri-operative care, trauma, and acute burn care. Controller design varies from simplistic to complex designs, based on detailed physiological models and adaptive properties that account for inter-patient and intra-patient variability; their maturity level ranges from theoretical models tested in silico to commercially available, FDA-approved products. This comprehensive scoping review was conducted in order to assess the current technological landscape of this field, describe the systems currently available or under development, and suggest further advancements that may unfold in the coming years. Ten distinct systems were identified and discussed.
Collapse
|
10
|
Rees SE, Spadaro S, Dalla Corte F, Dey N, Brohus JB, Scaramuzzo G, Lodahl D, Winding RR, Volta CA, Karbing DS. Transparent decision support for mechanical ventilation using visualization of clinical preferences. Biomed Eng Online 2022; 21:5. [PMID: 35073928 PMCID: PMC8785460 DOI: 10.1186/s12938-021-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background Systems aiding in selecting the correct settings for mechanical ventilation should visualize patient information at an appropriate level of complexity, so as to reduce information overload and to make reasoning behind advice transparent. Metaphor graphics have been applied to this effect, but these have largely been used to display diagnostic and physiologic information, rather than the clinical decision at hand. This paper describes how the conflicting goals of mechanical ventilation can be visualized and applied in making decisions. Data from previous studies are analyzed to assess whether visual patterns exist which may be of use to the clinical decision maker. Materials and methods The structure and screen visualizations of a commercial clinical decision support system (CDSS) are described, including the visualization of the conflicting goals of mechanical ventilation represented as a hexagon. Retrospective analysis is performed on 95 patients from 2 previous clinical studies applying the CDSS, to identify repeated patterns of hexagon symbols. Results Visual patterns were identified describing optimal ventilation, over and under ventilation and pressure support, and over oxygenation, with these patterns identified for both control and support modes of mechanical ventilation. Numerous clinical examples are presented for these patterns illustrating their potential interpretation at the bedside. Conclusions Visual patterns can be identified which describe the trade-offs required in mechanical ventilation. These may have potential to reduce information overload and help in simple and rapid identification of sub-optimal settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00974-5.
Collapse
|
11
|
Botta M, Wenstedt EFE, Tsonas AM, Buiteman-Kruizinga LA, van Meenen DMP, Korsten HHM, Horn J, Paulus F, Bindels AGJH, Schultz MJ, De Bie AJR. Effectiveness, safety and efficacy of INTELLiVENT-adaptive support ventilation, a closed-loop ventilation mode for use in ICU patients - a systematic review. Expert Rev Respir Med 2021; 15:1403-1413. [PMID: 34047244 DOI: 10.1080/17476348.2021.1933450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: INTELLiVENT-Adaptive Support Ventilation (INTELLiVENT-ASV), an advanced closed-loop ventilation mode for use in intensive care unit (ICU) patients, is equipped with algorithms that automatically adjust settings on the basis of physiologic signals and patient's activity. Here we describe its effectiveness, safety, and efficacy in various types of ICU patients.Areas covered: A systematic search conducted in MEDLINE, EMBASE, the Cochrane Central register of Controlled Trials (CENTRAL), and in Google Scholar identified 10 randomized clinical trials.Expert opinion: Studies suggest INTELLiVENT-ASV to be an effective automated mode with regard to the titrations of tidal volume, airway pressure, and oxygen. INTELLiVENT-ASV is as safe as conventional modes. However, thus far studies have not shown INTELLiVENT-ASV to be superior to conventional modes with regard to duration of ventilation and other patient-centered outcomes. Future studies are needed to test its efficacy.
Collapse
Affiliation(s)
- M Botta
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | - E F E Wenstedt
- Department of Intensive Care, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - A M Tsonas
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | - L A Buiteman-Kruizinga
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.,Department of Intensive Care, Reinier de Graaf Hospital, Delft, The Netherlands
| | - D M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | - H H M Korsten
- Department of Intensive Care, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Horn
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam UMC Research Institute, Amsterdam, The Netherlands
| | - F Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.,Faculty of Health, ACHIEVE, Centre of Applied Research, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - A G J H Bindels
- Department of Intensive Care, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - M J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Research Unit, Mahidol University, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A J R De Bie
- Department of Intensive Care, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Katayama S, Shima J, Tonai K, Koyama K, Nunomiya S. Accuracy of two pulse-oximetry measurements for INTELLiVENT-ASV in mechanically ventilated patients: a prospective observational study. Sci Rep 2021; 11:9001. [PMID: 33903716 PMCID: PMC8076307 DOI: 10.1038/s41598-021-88608-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Recently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable. Trial registration UMIN000027671. Registered 7 June 2017.
Collapse
Affiliation(s)
- Shinshu Katayama
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Jun Shima
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ken Tonai
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kansuke Koyama
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
13
|
Ouanes I, Bouhaouala F, Maatouk S, Lahmar M, Ben Abdallah S, Hammouda Z, Dachraoui F, Ouanes-Besbes L, L'Her E, Abroug F. Automatic oxygen administration and weaning in patients following mechanical ventilation. J Crit Care 2020; 61:45-51. [PMID: 33075609 DOI: 10.1016/j.jcrc.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate efficacy of FreeO2 device in oxygen weaning of patients after being liberated from mechanical ventilation (MV). METHODS Prospective crossover cohort study in patients admitted to ICU and after MV weaning. FreeO2 curves were recorded during constant flow and FreeO2 modes. Oxygenation parameters and O2 consumption were assessed. RESULTS Fifty one records were obtained in 51 patients (median age, 62 years, 54.9% had COPD, admission for acute respiratory failure in 96%). NIV was used initially in 68.6%. For a median records duration of 2.04 h, the time spent within target SpO2 range was significantly higher with FreeO2 mode compared to constant O2 flow mode [86.92% (77.11-92.39) vs 43.17% (5.08-75.37); p < 0.001]. Time with hyperoxia was lower with FreeO2 mode: 8.68% (2.96-15.59) vs 38.28% (2.02-86.34). Times with hypoxaemia, and with severe desaturation, were similar. At the end of FreeO2 mode, O2 flow was lower than 1 l/min in 28 patients (54.9%), with a median of 0.99 l/min. CONCLUSIONS For the purpose of oxygen weaning in patients recovering from MV, automatic O2 titration with FreeO2 was associated with a substantial reduction in O2 delivery and better oxygenation parameters in comparison with constant O2 flow.
Collapse
Affiliation(s)
- I Ouanes
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia.
| | - F Bouhaouala
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia
| | - S Maatouk
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia
| | - M Lahmar
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - S Ben Abdallah
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - Z Hammouda
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - F Dachraoui
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - L Ouanes-Besbes
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - E L'Her
- Service de Réanimation Médicale, CHRU de Brest, France; LATIM INSERM UMR 1101, Université de Bretagne Occidentale, Brest, France
| | - F Abroug
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire Fattouma Bourguiba, Monastir, Tunisia; Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| |
Collapse
|
14
|
Jonkman AH, Rauseo M, Carteaux G, Telias I, Sklar MC, Heunks L, Brochard LJ. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med 2020; 46:2301-2313. [PMID: 32780167 PMCID: PMC7417783 DOI: 10.1007/s00134-020-06206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
Proportional modes of ventilation assist the patient by adapting to his/her effort, which contrasts with all other modes. The two proportional modes are referred to as neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation with load-adjustable gain factors (PAV+): they deliver inspiratory assist in proportion to the patient’s effort, and hence directly respond to changes in ventilatory needs. Due to their working principles, NAVA and PAV+ have the ability to provide self-adjusted lung and diaphragm-protective ventilation. As these proportional modes differ from ‘classical’ modes such as pressure support ventilation (PSV), setting the inspiratory assist level is often puzzling for clinicians at the bedside as it is not based on usual parameters such as tidal volumes and PaCO2 targets. This paper provides an in-depth overview of the working principles of NAVA and PAV+ and the physiological differences with PSV. Understanding these differences is fundamental for applying any assisted mode at the bedside. We review different methods for setting inspiratory assist during NAVA and PAV+ , and (future) indices for monitoring of patient effort. Last, differences with automated modes are mentioned.
Collapse
Affiliation(s)
- Annemijn H Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Michela Rauseo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, Créteil, F-94010, France.,Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, F-94010, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, F-94010, France
| | - Irene Telias
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Laurent J Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Fully automated postoperative ventilation in cardiac surgery patients: a randomised clinical trial. Br J Anaesth 2020; 125:739-749. [PMID: 32739044 DOI: 10.1016/j.bja.2020.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ensuring that lung-protective ventilation is achieved at scale is challenging in perioperative practice. Fully automated ventilation may be more effective in delivering lung-protective ventilation. Here, we compared automated lung-protective ventilation with conventional ventilation after elective cardiac surgery in haemodynamically stable patients. METHODS In this single-centre investigator-led study, patients were randomly assigned at the end of cardiac surgery to receive either automated (adaptive support ventilation) or conventional ventilation. The primary endpoint was the proportion of postoperative ventilation time characterised by exposure to predefined optimal, acceptable, and critical (injurious) ventilatory parameters in the first three postoperative hours. Secondary outcomes included severe hypoxaemia (Spo2 <85%) and resumption of spontaneous breathing. Data are presented as mean (95% confidence intervals [CIs]). RESULTS We randomised 220 patients (30.4% females; age: 62-76 yr). Subjects randomised to automated ventilation (n=109) spent a 29.7% (95% CI: 22.1-37.4) higher mean proportion of postoperative ventilation time receiving optimal postoperative ventilation after surgery (P<0.001) compared with subjects receiving conventional postoperative ventilation (n=111). Automated ventilation also reduced the proportion of postoperative ventilation time that subjects were exposed to injurious ventilatory settings by 2.5% (95% CI: 1-4; P=0.003). Severe hypoxaemia was less likely in subjects randomised to automated ventilation (risk ratio: 0.26 [0.22-0.31]; P<0.01). Subjects resumed spontaneous breathing more rapidly when randomised to automated ventilation (hazard ratio: 1.38 [1.05-1.83]; P=0.03). CONCLUSIONS Fully automated ventilation in haemodynamically stable patients after cardiac surgery optimised lung-protective ventilation during postoperative ventilation, with fewer episodes of severe hypoxaemia and an accelerated resumption of spontaneous breathing. CLINICAL TRIAL REGISTRATION NCT03180203.
Collapse
|
16
|
Chelly J, Mazerand S, Jochmans S, Weyer CM, Pourcine F, Ellrodt O, Thieulot-Rolin N, Serbource-Goguel J, Sy O, Vong LVP, Monchi M. Automated vs. conventional ventilation in the ICU: a randomized controlled crossover trial comparing blood oxygen saturation during daily nursing procedures (I-NURSING). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:453. [PMID: 32698860 PMCID: PMC7374079 DOI: 10.1186/s13054-020-03155-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/05/2020] [Indexed: 02/01/2023]
Abstract
Background Hypoxia is common during daily nursing procedures (DNPs) routinely performed on mechanically ventilated patients. The impact of automated ventilation on the incidence and severity of blood oxygen desaturation during DNPs remains unknown. Methods A prospective randomized controlled crossover trial was carried out in a French intensive care unit to compare blood oxygen pulse saturation (SpO2) during DNPs performed on patients mechanically ventilated in automated and conventional ventilation modes (AV and CV, respectively). All patients with FiO2 ≤ 60% and without prone positioning or neuromuscular blocking agents were included. Patients underwent two DNPs on the same day using AV (INTELLiVENT-ASV®) and CV (volume control, biphasic positive airway pressure, or pressure support ventilation) in a randomized order. The primary outcome was the percentage of time spent with SpO2 in the acceptable range of 90–95% during the DNP. Results Of the 265 included patients, 93% had been admitted for a medical pathology, the majority for acute respiratory failure (52%). There was no difference between the two periods in terms of DNP duration, sedation requirements, or ventilation parameters, but patients had more spontaneous breaths and lower peak airway pressures during the AV period (p < 0.001). The percentage of time spent with SpO2 in the acceptable range during DNPs was longer in the AV period than in the CV period (48 ± 37 vs. 43 ± 37, percentage of DNP period; p = 0.03). After adjustment, AV was associated with a higher number of DNPs carried out with SpO2 in the acceptable range (odds ratio, 1.82; 95% CI, 1.28 to 2.6; p = 0.001) and a lower incidence of blood oxygen desaturation ≤ 85% (adjusted odds ratio, 0.50; 95% CI, 0.30 to 0.85; p = 0.01). Conclusion AV appears to reduce the incidence and severity of blood oxygen desaturation during daily nursing procedures (DNPs) in comparison to CV. Trial registration This study was registered in clinical-trial.gov (NCT03176329) in June 2017. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jonathan Chelly
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France. .,Clinical Research Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France.
| | - Sandie Mazerand
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Sebastien Jochmans
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France.,Clinical Research Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Claire-Marie Weyer
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Franck Pourcine
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Olivier Ellrodt
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Nathalie Thieulot-Rolin
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Jean Serbource-Goguel
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Oumar Sy
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Ly Van Phach Vong
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Mehran Monchi
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France.,Clinical Research Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| |
Collapse
|
17
|
Abstract
Automated medical technology is becoming an integral part of routine anesthetic practice. Automated technologies can improve patient safety, but may create new workflows with potentially surprising adverse consequences and cognitive errors that must be addressed before these technologies are adopted into clinical practice. Industries such as aviation and nuclear power have developed techniques to mitigate the unintended consequences of automation, including automation bias, skill loss, and system failures. In order to maximize the benefits of automated technology, clinicians should receive training in human–system interaction including topics such as vigilance, management of system failures, and maintaining manual skills. Medical device manufacturers now evaluate usability of equipment using the principles of human performance and should be encouraged to develop comprehensive training materials that describe possible system failures. Additional research in human–system interaction can improve the ways in which automated medical devices communicate with clinicians. These steps will ensure that medical practitioners can effectively use these new devices while being ready to assume manual control when necessary and prepare us for a future that includes automated health care.
Collapse
|
18
|
Katayama S, Tonai K, Shima J, Koyama K, Nunomiya S. Predictive factors for successful INTELLiVENT-ASV® use: a retrospective observational study. BMC Anesthesiol 2020; 20:94. [PMID: 32334537 PMCID: PMC7183105 DOI: 10.1186/s12871-020-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background INTELLiVENT-ASV® (I-ASV) is a closed-loop ventilation mode that automatically controls the ventilation settings. Although a number of studies have reported the usefulness of I-ASV, the clinical situations in which it may be useful have not yet been clarified. We aimed to report our initial 3 years of experience using I-ASV, particularly the clinical conditions and the technical and organizational factors associated with its use. Furthermore, we evaluated the usefulness of I-ASV and determined the predictive factors for successful management with I-ASV. Methods This single-center, retrospective observational study included patients who were ventilated using the Hamilton G5® ventilator (Hamilton Medical AG, Rhäzüns, Switzerland) from January 2016 to December 2018. The patients were categorized into the “I-ASV success” group and “I-ASV failure” group (those receiving mechanical ventilation with I-ASV along with any other mode). Multivariate analysis was performed to identify factors associated with successful I-ASV management. Results Of the 189 patients, 135 (71.4%) were categorized into the I-ASV success group. In the I-ASV success group, the reasons for ICU admission included post-elective surgery (94.1%), post-emergent surgery (81.5%), and other medical reasons (55.6%). I-ASV failure was associated with a low P/F ratio (278 vs. 167, P = 0.0003) and high Acute Physiology and Chronic Health Evaluation (APACHE) II score (21 vs. 26, P < 0.0001). The main reasons for not using I-ASV included strong inspiratory effort and asynchrony. The APACHE II score was an independent predictive factor for successful management with I-ASV, with an odds ratio of 0.92 (95% confidential interval 0.87–0.96, P = 0.0006). The area under the receiver operating curve for the APACHE II score was 0.722 (cut-off: 24). Conclusions In this study, we found that 71.4% of the fully mechanically ventilated patients could be managed successfully with I-ASV. The APACHE II score was an independent factor that could help predict the successful management of I-ASV. To improve I-ASV management, it is necessary to focus on patient-ventilator interactions.
Collapse
Affiliation(s)
- Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Ken Tonai
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Jun Shima
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kansuke Koyama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
19
|
Dai YL, Wu CP, Yang GG, Chang H, Peng CK, Huang KL. Adaptive Support Ventilation Attenuates Ventilator Induced Lung Injury: Human and Animal Study. Int J Mol Sci 2019; 20:ijms20235848. [PMID: 31766467 PMCID: PMC6929029 DOI: 10.3390/ijms20235848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Adaptive support ventilation (ASV) is a closed-loop ventilation, which can make automatic adjustments in tidal volume (VT) and respiratory rate based on the minimal work of breathing. The purpose of this research was to study whether ASV can provide a protective ventilation pattern to decrease the risk of ventilator-induced lung injury in patients of acute respiratory distress syndrome (ARDS). In the clinical study, 15 ARDS patients were randomly allocated to an ASV group or a pressure-control ventilation (PCV) group. There was no significant difference in the mortality rate and respiratory parameters between these two groups, suggesting the feasible use of ASV in ARDS. In animal experiments of 18 piglets, the ASV group had a lower alveolar strain compared with the volume-control ventilation (VCV) group. The ASV group exhibited less lung injury and greater alveolar fluid clearance compared with the VCV group. Tissue analysis showed lower expression of matrix metalloproteinase 9 and higher expression of claudin-4 and occludin in the ASV group than in the VCV group. In conclusion, the ASV mode is capable of providing ventilation pattern fitting into the lung-protecting strategy; this study suggests that ASV mode may effectively reduce the risk or severity of ventilator-associated lung injury in animal models.
Collapse
Affiliation(s)
- Yu-Ling Dai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Taiwan Landseed Hospital, Tao-Yuan 32449, Taiwan;
| | - Gee-Gwo Yang
- Division of Chest Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
| | - Hung Chang
- Department of Physiology, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-K.P.); (K.-L.H.); Tel.: +886-2-8792-3311 (ext. 13482) (C.-K.P.); +886-2-8792-3311 (ext. 12464) (K.-L.H)
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-K.P.); (K.-L.H.); Tel.: +886-2-8792-3311 (ext. 13482) (C.-K.P.); +886-2-8792-3311 (ext. 12464) (K.-L.H)
| |
Collapse
|
20
|
Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung 2019; 49:427-434. [PMID: 31733881 DOI: 10.1016/j.hrtlng.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation- induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT-ASV® is a closed-loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics. OBJECTIVES This prospective observational study investigated ΔP and MP (and also transpulmonary ΔP (ΔPL) and MP (MPL) for a subgroup of patients) delivered by INTELLiVENT-ASV. METHODS Adult patients admitted to the ICU were included if they were sedated and met the criteria for a single lung condition (normal lungs, COPD, or ARDS). INTELLiVENT-ASV was used with default target settings. If PEEP was above 16 cmH2O, the recruitment strategy used transpulmonary pressure as a reference, and ΔPL and MPL were computed. Measurements were made once for each patient. RESULTS Of the 255 patients included, 98 patients were classified as normal-lungs, 28 as COPD, and 129 as ARDS patients. The median ΔP was 8 (7 - 10), 10 (8 - 12), and 9 (8 - 11) cmH2O for normal-lungs, COPD, and ARDS patients, respectively. The median MP was 9.1 (4.9 - 13.5), 11.8 (8.6 - 16.5), and 8.8 (5.6 - 13.8) J/min for normal-lungs, COPD, and ARDS patients, respectively. For the 19 patients managed with transpulmonary pressure ΔPL was 6 (4 - 7) cmH2O and MPL was 3.6 (3.1 - 4.4) J/min. CONCLUSIONS In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.
Collapse
Affiliation(s)
- Jean-Michel Arnal
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 Avenue Henri Sainte Claire Deville, 83056 Toulon, France; Department of Medical Research, Hamilton Medical AG, via Crusch 8, 7402 Bonaduz, Switzerland.
| | - Mathieu Saoli
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 Avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Aude Garnero
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 Avenue Henri Sainte Claire Deville, 83056 Toulon, France
| |
Collapse
|
21
|
Gallagher JJ. Alternative Modes of Mechanical Ventilation. AACN Adv Crit Care 2019; 29:396-404. [PMID: 30523010 DOI: 10.4037/aacnacc2018372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Modern mechanical ventilators are more complex than those first developed in the 1950s. Newer ventilation modes can be difficult to understand and implement clinically, although they provide more treatment options than traditional modes. These newer modes, which can be considered alternative or nontraditional, generally are classified as either volume controlled or pressure controlled. Dual-control modes incorporate qualities of pressure-controlled and volume-controlled modes. Some ventilation modes provide variable ventilatory support depending on patient effort and may be classified as closed-loop ventilation modes. Alternative modes of ventilation are tools for lung protection, alveolar recruitment, and ventilator liberation. Understanding the function and application of these alternative modes prior to implementation is essential and is most beneficial for the patient.
Collapse
Affiliation(s)
- John J Gallagher
- John J. Gallagher is Trauma Program Manager/Clinical Nurse Specialist at Penn Presbyterian Medical Center, 51 N 39th Street, Medical Office Building, Suite 120, Philadelphia, PA 19104
| |
Collapse
|
22
|
Alexis Ruiz A, Wyszyńska PK, Laudanski K. Narrative Review of Decision-Making Processes in Critical Care. Anesth Analg 2019; 128:962-970. [DOI: 10.1213/ane.0000000000003683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Major VJ, Chiew YS, Shaw GM, Chase JG. Biomedical engineer's guide to the clinical aspects of intensive care mechanical ventilation. Biomed Eng Online 2018; 17:169. [PMID: 30419903 PMCID: PMC6233601 DOI: 10.1186/s12938-018-0599-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/01/2018] [Indexed: 12/16/2022] Open
Abstract
Background Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP–FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective. Discussion This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions. Conclusion Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.
Collapse
Affiliation(s)
- Vincent J Major
- Department of Population Health, NYU Langone Health, New York, NY, USA.
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - J Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
24
|
Abstract
Closed loop control of mechanical ventilation is routine and operates behind the ventilator interface. Reducing caregiver interactions is neither an advantage for the patient or the staff. Automated systems causing lack of situational awareness of the intensive care unit are a concern. Along with autonomous systems must come monitoring and displays that display patients' current condition and response to therapy. Alert notifications for sudden escalation of therapy are required to ensure patient safety. Automated ventilation is useful in remote settings in the absence of experts. Whether automated ventilation will be accepted in large academic medical centers remains to be seen.
Collapse
|
25
|
Anan'ev EP, Polupan AA, Matskovskiy IV, Oshorov AV, Goryachev AS, Savin IA, Sychev AA, Tabasaranskiy TF, Podlepich VV, Krylov KY, Pashin AA, Satishur OE, Piquilloud L, Novotni D, Potapov AA, Savchenko YV. [Use of the IntelliVent-ASV mode for maintaining the target EtCO2 range in patients with severe TBI]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 81:63-68. [PMID: 29076469 DOI: 10.17116/neiro201781563-68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE the study purpose was to evaluate the efficacy of the IntelliVent-ASV mode in maintaining the target range of PaCO2 in patients with severe TBI. MATERIAL AND METHODS The study included 12 severe TBI patients with the wakefulness level scored 4-9 (GCS). This was a crossover design study. Two ventilation modes were consecutively used: IntelliVent-ASV and P-CMV, for 12 h each. When using the P-CMV mode, the ventilation parameters were set to maintain PaCO2 in a range of 35-38 mm Hg. The IntelliVent-ASV mode involved the Brain Injury ventilation algorithm. The target range of EtCO2 was set in accordance with the delta PaCO2-EtCO2 to maintain PaCO2 in a range of 35-38. At the beginning of each ventilation period and every 3 hours, the arterial blood gas composition was analyzed. When PaCO2 occurred out of the 35-38 range, appropriate adjustments were made to the ventilation parameters. In the P-CMV mode, the Pinsp and RR parameters were adjusted to achieve the target PaCO2 range. In IntelliVent mode, a shift of the target EtCO2 range was adjusted in accordance with a changed PaCO2-EtCO2 difference. In all patients, ICP, blood pressure, and EtCO2 were monitored; the arterial blood gas composition was analyzed every 3 h; the frequency of manual settings of ventilation parameters was recorded. RESULTS The EtCO2 and PaCO2 parameters were found not to be significantly different in the P-CMV and IntelliVent modes, but the spread in these parameters was significantly lower in the IntelliVent ventilation mode. The PaCO2 parameter occurred out of the target range significantly less often in the IntelliVent mode than in the P-CMV mode. The mean frequency of manual respirator settings needed to maintain the target EtCO2 range was significantly lower in the IntelliVent-ASV mode than in the P-CMV mode. CONCLUSION The IntelliVent-ASV mode provides more efficient maintenance of PaCO2 in the target range compared to traditional artificial ventilation using fewer manual settings of the ventilation parameters.
Collapse
Affiliation(s)
- E P Anan'ev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Polupan
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A V Oshorov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - I A Savin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Sychev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - K Yu Krylov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Pashin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - L Piquilloud
- CHUV-University Hospital of Lausanne, Lausanne, Switzerland
| | - D Novotni
- Hamilton Medical, Bonaduz, Switzerland
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | |
Collapse
|
26
|
Dres M, Demoule A. Les systèmes automatisés de sevrage de la ventilation mécanique ont-ils une place en pratique clinique ? MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/s13546-017-1323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Du fait de la stagnation de l’offre démographique médicale et du vieillissement de la population, les besoins en ventilation mécanique vont croître dans les années à venir. Dans ce contexte, la conduite du sevrage de la ventilation mécanique par des systèmes automatisés est une perspective séduisante, permettant d’épargner du temps médical et infirmier. La gestion du sevrage par des systèmes automatisés repose sur l’utilisation de l’intelligence artificielle incorporée au sein de ventilateurs capables de détecter précocement la sevrabilité des patients puis d’entreprendre le cas échéant une épreuve de ventilation spontanée. Deux systèmes répondant à ce cahier des charges sont actuellement commercialisés. Bien que les données disponibles soient peu nombreuses, celles-ci semblent justifier l’intérêt pour ces systèmes en montrant au pire une équivalence, au mieux une réduction dans la durée du sevrage, lorsqu’ils sont comparés à une démarche de sevrage conventionnelle. Les défis de demain seront de tester la généralisation de ces systèmes dans la pratique clinique et de définir les caractéristiques des populations susceptibles d’en bénéficier le plus.
Collapse
|
27
|
Jaffal K, Six S, Zerimech F, Nseir S. Relationship between hyperoxemia and ventilator associated pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:453. [PMID: 29264370 DOI: 10.21037/atm.2017.10.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies suggest a relationship between hyperoxemia and ventilator-associated pneumonia (VAP). Hyperoxemia is responsible for denitrogenation phenomena, and inhibition of surfactant production, promoting atelectasis in mechanically ventilated patients. Further, hyperoxemia impairs the efficacy of alveolar macrophages to migrate, phagocyte and kill bacteria. Oxygen can also cause pulmonary-specific toxic effect called hyperoxic acute lung injury leading to longer duration of mechanical ventilation. All these hyperoxic effects are well-known risk factors for VAP. A recent retrospective large single center study identified hyperoxemia as an independent risk factor for VAP. However, two recent randomized controlled trials evaluated the impact of conservative oxygen strategy versus a liberal strategy, but did not confirm the role of hyperoxemia in lower respiratory tract infection occurrence. In this review, we discuss animal and human studies suggesting a relationship between these two common conditions in mechanically ventilated patients and potential interventions that should be evaluated. Further large prospective studies in carefully selected groups of patients are required to confirm the potential role of hyperoxemia in VAP pathogenesis and to evaluate the impact of a conservative oxygen strategy vs. a conventional strategy on the incidence of VAP.
Collapse
Affiliation(s)
| | - Sophie Six
- CHU Lille, Centre de Réanimation, Lille, France.,Lille University, Faculté de Médecine, Lille, France
| | - Farid Zerimech
- CHU Lille, Centre de Biologie et de Pathologie, Lille, France
| | - Saad Nseir
- CHU Lille, Centre de Réanimation, Lille, France.,Lille University, Faculté de Médecine, Lille, France
| |
Collapse
|
28
|
Physician-Directed Versus Computerized Closed-Loop Control of Blood Pressure Using Phenylephrine in a Swine Model. Anesth Analg 2017; 125:110-116. [PMID: 28368937 DOI: 10.1213/ane.0000000000001961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Vasopressors provide a rapid and effective approach to correct hypotension in the perioperative setting. Our group developed a closed-loop control (CLC) system that titrates phenylephrine (PHP) based on the mean arterial pressure (MAP) during general anesthesia. As a means of evaluating system competence, we compared the performance of the automated CLC with physicians. We hypothesized that our CLC algorithm more effectively maintains blood pressure at a specified target with less blood pressure variability and reduces the dose of PHP required. METHODS In a crossover study design, 6 swine under general anesthesia were subjected to a normovolemic hypotensive challenge induced by sodium nitroprusside. The physicians (MD) manually changed the PHP infusion rate, and the CLC system performed this task autonomously, adjusted every 3 seconds to achieve a predetermined MAP. RESULTS The CLC maintained MAP within 5 mm Hg of the target for (mean ± standard deviation) 93.5% ± 3.9% of the time versus 72.4% ± 26.8% for the MD treatment (P = .054). The mean (standard deviation) percentage of time that the CLC and MD interventions were above target range was 2.1% ± 3.3% and 25.8% ± 27.4% (P = .06), respectively. Control statistics, performance error, median performance error, and median absolute performance error were not different between CLC and MD interventions. PHP infusion rate adjustments by the physician were performed 12 to 80 times in individual studies over a 60-minute period. The total dose of PHP used was not different between the 2 interventions. CONCLUSIONS The CLC system performed as well as an anesthesiologist totally focused on MAP control by infusing PHP. Computerized CLC infusion of PHP provided tight blood pressure control under conditions of experimental vasodilation.
Collapse
|
29
|
Sanchez-Morillo D, Olaby O, Fernandez-Granero MA, Leon-Jimenez A. Physiological closed-loop control in intelligent oxygen therapy: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 146:101-108. [PMID: 28688479 DOI: 10.1016/j.cmpb.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. METHODS A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. RESULTS A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. CONCLUSIONS Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices.
Collapse
Affiliation(s)
- Daniel Sanchez-Morillo
- Biomedical Engineering and Telemedicine Research Group, Department of Automation, Electronics and Computer Architecture and Networks, School of Engineering, University of Cadiz, Avda. de la Universidad, 10, 11519 Puerto Real, Cadiz, Spain.
| | - Osama Olaby
- Biomedical Engineering and Telemedicine Research Group, Department of Automation, Electronics and Computer Architecture and Networks, School of Engineering, University of Cadiz, Avda. de la Universidad, 10, 11519 Puerto Real, Cadiz, Spain; Department of Control Engineering and Automation, University of Aleppo, Aleppo, Syria
| | - Miguel Angel Fernandez-Granero
- Biomedical Engineering and Telemedicine Research Group, Department of Automation, Electronics and Computer Architecture and Networks, School of Engineering, University of Cadiz, Avda. de la Universidad, 10, 11519 Puerto Real, Cadiz, Spain
| | - Antonio Leon-Jimenez
- Pulmonology, Allergy and Thoracic Surgery Unit, Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
30
|
Schädler D, Miestinger G, Becher T, Frerichs I, Weiler N, Hörmann C. Automated control of mechanical ventilation during general anaesthesia: study protocol of a bicentric observational study (AVAS). BMJ Open 2017; 7:e014742. [PMID: 28495814 PMCID: PMC5566603 DOI: 10.1136/bmjopen-2016-014742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Automated control of mechanical ventilation during general anaesthesia is not common. A novel system for automated control of most of the ventilator settings was designed and is available on an anaesthesia machine. METHODS AND ANALYSIS The 'Automated control of mechanical ventilation during general anesthesia study' (AVAS) is an international investigator-initiated bicentric observational study designed to examine safety and efficacy of the system during general anaesthesia. The system controls mechanical breathing frequency, inspiratory pressure, pressure support, inspiratory time and trigger sensitivity with the aim to keep a patient stable in user adoptable target zones. Adult patients, who are classified as American Society of Anesthesiologists physical status I, II or III, scheduled for elective surgery of the upper or lower limb or for peripheral vascular surgery in general anaesthesia without any additional regional anaesthesia technique and who gave written consent for study participation are eligible for study inclusion. Primary endpoint of the study is the frequency of specifically defined adverse events. Secondary endpoints are frequency of normoventilation, hypoventilation and hyperventilation, the time period between switch from controlled ventilation to assisted ventilation, achievement of stable assisted ventilation of the patient, proportion of time within the target zone for tidal volume, end-tidal partial pressure of carbon dioxide as individually set up for each patient by the user, frequency of alarms, frequency distribution of tidal volume, inspiratory pressure, inspiration time, expiration time, end-tidal partial pressure of carbon dioxide and the number of re-intubations. ETHICS AND DISSEMINATION AVAS will be the first clinical study investigating a novel automated system for the control of mechanical ventilation on an anaesthesia machine. The study was approved by the ethics committees of both participating study sites. In case that safety and efficacy are acceptable, a randomised controlled trial comparing the novel system with the usual practice may be warranted. TRIAL REGISTRATION DRKS DRKS00011025, registered 12 October 2016; clinicaltrials.gov ID. NCT02644005, registered 30 December 2015.
Collapse
Affiliation(s)
- Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georg Miestinger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Hörmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
31
|
Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne) 2017; 4:31. [PMID: 28377920 PMCID: PMC5359227 DOI: 10.3389/fmed.2017.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/06/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. MATERIALS AND METHODS Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning (n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning (n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. RESULTS AND DISCUSSION Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group (p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. CONCLUSION The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.
Collapse
Affiliation(s)
- Evgenia V Fot
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| | - Natalia N Izotova
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| | - Angelika S Yudina
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| | - Aleksei A Smetkin
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| | - Vsevolod V Kuzkov
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| | - Mikhail Y Kirov
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University , Arkhangelsk , Russia
| |
Collapse
|
32
|
Closed-Loop Control of FiO2 Rapidly Identifies Need For Rescue Ventilation and Reduces ARDS Severity in a Conscious Sheep Model of Burn and Smoke Inhalation Injury. Shock 2017; 47:200-207. [DOI: 10.1097/shk.0000000000000686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Rees SE, Karbing DS. Model-based advice for mechanical ventilation: From research (INVENT) to product (Beacon Caresystem). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5331-4. [PMID: 26737495 DOI: 10.1109/embc.2015.7319595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes the structure and functionality of a physiological model-based system for providing advice on the settings of mechanical ventilation. Use of the system is presented with examples of patients on support and control modes of mechanical ventilation.
Collapse
|
34
|
Pilarczyk K, von der Brelie M, Moikow L, Haake N. Neue Beatmungsmodi. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2016. [DOI: 10.1007/s00398-015-0046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Tam MKP, Wong WT, Gomersall CD, Tian Q, Ng SK, Leung CCH, Underwood MJ. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care 2016; 33:163-8. [PMID: 27006266 DOI: 10.1016/j.jcrc.2016.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aims to compare the effectiveness of weaning with adaptive support ventilation (ASV) incorporating progressively reduced or constant target minute ventilation in the protocol in postoperative care after cardiac surgery. MATERIAL AND METHODS A randomized controlled unblinded study of 52 patients after elective coronary artery bypass surgery was carried out to determine whether a protocol incorporating a decremental target minute ventilation (DTMV) results in more rapid weaning of patients ventilated in ASV mode compared to a protocol incorporating a constant target minute ventilation. RESULTS Median duration of mechanical ventilation (145 vs 309 minutes; P = .001) and intubation (225 vs 423 minutes; P = .005) were significantly shorter in the DTMV group. There was no difference in adverse effects (42% vs 46%) or mortality (0% vs 0%) between the 2 groups. CONCLUSIONS Use of a DTMV protocol for postoperative ventilation of cardiac surgical patients in ASV mode results in a shorter duration of ventilation and intubation without evidence of increased risk of adverse effects.
Collapse
Affiliation(s)
- M K P Tam
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Shatin, Hong Kong
| | - W T Wong
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - C D Gomersall
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Q Tian
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - S K Ng
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Shatin, Hong Kong
| | - C C H Leung
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - M J Underwood
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
36
|
Squara P, Imhoff M, Cecconi M. Metrology in medicine: from measurements to decision, with specific reference to anesthesia and intensive care. Anesth Analg 2015; 120:66-75. [PMID: 25625255 PMCID: PMC4272233 DOI: 10.1213/ane.0000000000000477] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metrology is the science of measurements. Although of critical importance in medicine and especially in critical care, frequent confusion in terms and definitions impact either interphysician communications or understanding of manufacturers’ and engineers’ instructions and limitations when using devices. In this review, we first list the terms defined by the International Bureau of Weights and Measures regarding quantities and units, measurements, devices for measurement, properties of measuring devices, and measurement standards. The traditional tools for assessing the most important measurement quality criteria are also reviewed with clinical examples for diagnosis, alarm, and titration purposes, as well as for assessing the uncertainty of reference methods.
Collapse
Affiliation(s)
- Pierre Squara
- From the *ICU Department, Réanimation CERIC, Clinique Ambroise Paré, Neuilly, France; †Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Ruhr-Universität Bochum, Bochum, Germany; and ‡Adult Critical Care Directorate and Anaesthesia, St. George's Hospital and St. George's University of London, London, United Kingdom
| | | | | |
Collapse
|
37
|
Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children. Cochrane Database Syst Rev 2014; 2014:CD009235. [PMID: 24915581 PMCID: PMC6517003 DOI: 10.1002/14651858.cd009235.pub3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Automated closed loop systems may improve adaptation of mechanical support for a patient's ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. This review was originally published in 2013 with an update published in 2014. OBJECTIVES The primary objective for this review was to compare the total duration of weaning from mechanical ventilation, defined as the time from study randomization to successful extubation (as defined by study authors), for critically ill ventilated patients managed with an automated weaning system versus no automated weaning system (usual care).Secondary objectives for this review were to determine differences in the duration of ventilation, intensive care unit (ICU) and hospital lengths of stay (LOS), mortality, and adverse events related to early or delayed extubation with the use of automated weaning systems compared to weaning in the absence of an automated weaning system. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 8); MEDLINE (OvidSP) (1948 to September 2013); EMBASE (OvidSP) (1980 to September 2013); CINAHL (EBSCOhost) (1982 to September 2013); and the Latin American and Caribbean Health Sciences Literature (LILACS). Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles. The original search was run in August 2011, with database auto-alerts up to August 2012. SELECTION CRITERIA We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an ICU. DATA COLLECTION AND ANALYSIS Two authors independently extracted study data and assessed risk of bias. We combined data in forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria. MAIN RESULTS We included 21 trials (19 adult, two paediatric) totaling 1676 participants (1628 adults, 48 children) in this updated review. Pooled data from 16 eligible trials reporting weaning duration indicated that automated closed loop systems reduced the geometric mean duration of weaning by 30% (95% confidence interval (CI) 13% to 45%), however heterogeneity was substantial (I(2) = 87%, P < 0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of an effect on mortality rates, hospital LOS, reintubation rates, self-extubation and use of non-invasive ventilation following extubation. Prolonged mechanical ventilation > 21 days and tracheostomy were reduced in favour of automated systems (relative risk (RR) 0.51, 95% CI 0.27 to 0.95 and RR 0.67, 95% CI 0.50 to 0.90 respectively). Overall the quality of the evidence was high with the majority of trials rated as low risk. AUTHORS' CONCLUSIONS Automated closed loop systems may result in reduced duration of weaning, ventilation and ICU stay. Reductions are more likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Collapse
Affiliation(s)
- Louise Rose
- Sunnybrook Health Sciences Centre and Sunnybrook Research InstituteDepartment of Critical Care MedicineTorontoCanada
| | - Marcus J Schultz
- Academic Medical Center, University of AmsterdamLaboratory of Experimental Intensive Care and AnesthesiologyMeibergdreef 9AmsterdamNetherlands1105AZ
| | - Chris R Cardwell
- Queen's University BelfastCentre for Public HealthSchool of MedicineDentistry and Biomedical SciencesBelfastNorthern IrelandUKBT12 6BJ
| | - Philippe Jouvet
- Sainte‐Justine Hospital, University of MontrealDepartment of Pediatrics3175 Chemin Côte Sainte CatherineMontrealQCCanadaH3T 1C5
| | - Danny F McAuley
- Queen's University BelfastCentre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesWellcome‐Wolfson Building97 Lisburn RoadBelfastNorthern IrelandUKBT9 7BL
- Royal Victoria HospitalRegional Intensive Care UnitGrosvenor RoadBelfastUKBT12 6BA
| | - Bronagh Blackwood
- Queen's University BelfastCentre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesWellcome‐Wolfson Building97 Lisburn RoadBelfastNorthern IrelandUKBT9 7BL
| | | |
Collapse
|
38
|
|
39
|
Saihi K, Richard JCM, Gonin X, Krüger T, Dojat M, Brochard L. Feasibility and reliability of an automated controller of inspired oxygen concentration during mechanical ventilation. Crit Care 2014; 18:R35. [PMID: 24552490 PMCID: PMC4031979 DOI: 10.1186/cc13734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Hypoxemia and high fractions of inspired oxygen (FiO2) are concerns in critically ill patients. An automated FiO2 controller based on continuous oxygen saturation (SpO2) measurement was tested. Two different SpO2-FiO2 feedback open loops, designed to react differently based on the level of hypoxemia, were compared. The results of the FiO2 controller were also compared with a historical control group. METHODS The system measures SpO2, compares with a target range (92% to 96%), and proposes in real time FiO2 settings to maintain SpO2 within target. In 20 patients under mechanical ventilation, two different FiO2-SpO2 open loops were applied by a dedicated research nurse during 3 hours, each in random order. The times spent in and outside the target SpO2 values were measured. The results of the automatic controller were then compared with a retrospective control group of 30 ICU patients. SpO2-FiO2 values of the control group were collected over three different periods of 6 hours. RESULTS Time in the target range was higher than 95% with the controller. When the 20 patients were separated according to the median PaO2/FiO2 (160(133-176) mm Hg versus 239(201-285)), the loop with the highest slope was slightly better (P = 0.047) for the more-hypoxemic patients. Hyperoxemia and hypoxemia durations were significantly shorter with the controller compared with usual care: SpO2 target range was reached 90% versus 24%, 27% and 32% (P < .001) with the controller, compared with three historical control-group periods. CONCLUSION A specific FiO2 controller is able to maintain SpO2 reliably within a predefined target range. Two different feedback loops can be used, depending on the initial PaO2/FiO2; with both, the automatic controller showed excellent performance when compared with usual care.
Collapse
|
40
|
Suarez-Sipmann F. New modes of assisted mechanical ventilation. Med Intensiva 2014; 38:249-60. [PMID: 24507472 DOI: 10.1016/j.medin.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
Abstract
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes.
Collapse
Affiliation(s)
- F Suarez-Sipmann
- Servicio de Medicina Intensiva, Hospital Universitario de Uppsala, Laboratorio Hedenstierna, Departamento de Ciencias Quirúrgicas, Universidad de Uppsala, Uppsala, Suecia.
| | | |
Collapse
|
41
|
Prospective randomized crossover study of a new closed-loop control system versus pressure support during weaning from mechanical ventilation. Anesthesiology 2013; 119:631-41. [PMID: 23619172 DOI: 10.1097/aln.0b013e3182952608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intellivent is a new full closed-loop controlled ventilation that automatically adjusts both ventilation and oxygenation parameters. The authors compared gas exchange and breathing pattern variability of Intellivent and pressure support ventilation (PSV). METHODS In a prospective, randomized, single-blind design crossover study, 14 patients were ventilated during the weaning phase, with Intellivent or PSV, for two periods of 24 h in a randomized order. Arterial blood gases were obtained after 1, 8, 16, and 24 h with each mode. Ventilatory parameters were recorded continuously in a breath-by-breath basis during the two study periods. The primary endpoint was oxygenation, estimated by the calculation of the difference between the PaO2/FIO2 ratio obtained after 24 h of ventilation and the PaO2/FIO2 ratio obtained at baseline in each mode. The variability in the ventilatory parameters was also evaluated by the coefficient of variation (SD to mean ratio). RESULTS There were no adverse events or safety issues requiring premature interruption of both modes. The PaO2/FIO2 (mean ± SD) ratio improved significantly from 245 ± 75 at baseline to 294 ± 123 (P = 0.03) after 24 h of Intellivent. The coefficient of variation of inspiratory pressure and positive end-expiratory pressure (median [interquartile range]) were significantly higher with Intellivent, 16 [11-21] and 15 [7-23]%, compared with 6 [5-7] and 7 [5-10]% in PSV. Inspiratory pressure, positive end-expiratory pressure, and FIO2 changes were adjusted significantly more often with Intellivent compared with PSV. CONCLUSIONS Compared with PSV, Intellivent during a 24-h period improved the PaO2/FIO2 ratio in parallel with more variability in the ventilatory support and more changes in ventilation settings.
Collapse
|
42
|
Arnal JM, Garnero A, Novonti D, Demory D, Ducros L, Berric A, Donati SY, Corno G, Jaber S, Durand-Gasselin J. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV™) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care 2013; 17:R196. [PMID: 24025234 PMCID: PMC4056360 DOI: 10.1186/cc12890] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/22/2013] [Accepted: 09/11/2013] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION IntelliVent-ASV™ is a full closed-loop ventilation mode that automatically adjusts ventilation and oxygenation parameters in both passive and active patients. This feasibility study compared oxygenation and ventilation settings automatically selected by IntelliVent-ASV™ among three predefined lung conditions (normal lung, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD)) in active and passive patients. The feasibility of IntelliVent-ASV™ use was assessed based on the number of safety events, the need to switch to conventional mode for any medical reason, and sensor failure. METHOD This prospective observational comparative study included 100 consecutive patients who were invasively ventilated for less than 24 hours at the time of inclusion with an expected duration of ventilation of more than 12 hours. Patients were ventilated using IntelliVent-ASV™ from inclusion to extubation. Settings, automatically selected by the ventilator, delivered ventilation, respiratory mechanics, and gas exchanges were recorded once a day. RESULTS Regarding feasibility, all patients were ventilated using IntelliVent-ASV™ (392 days in total). No safety issues occurred and there was never a need to switch to an alternative ventilation mode. The fully automated ventilation was used for 95% of the total ventilation time. IntelliVent-ASV™ selected different settings according to lung condition in passive and active patients. In passive patients, tidal volume (VT), predicted body weight (PBW) was significantly different between normal lung (n = 45), ARDS (n = 16) and COPD patients (n = 19) (8.1 (7.3 to 8.9) mL/kg; 7.5 (6.9 to 7.9) mL/kg; 9.9 (8.3 to 11.1) mL/kg, respectively; P 0.05). In passive ARDS patients, FiO2 and positive end-expiratory pressure (PEEP) were statistically higher than passive normal lung (35 (33 to 47)% versus 30 (30 to 31)% and 11 (8 to 13) cmH2O versus 5 (5 to 6) cmH2O, respectively; P< 0.05). CONCLUSIONS IntelliVent-ASV™ was safely used in unselected ventilated ICU patients with different lung conditions. Automatically selected oxygenation and ventilation settings were different according to the lung condition, especially in passive patients. TRIAL REGISTRATION ClinicalTrials.gov: NCT01489085.
Collapse
Affiliation(s)
- Jean-Michel Arnal
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
- Department of Medical Research, Hamilton Medical, 8 via Crusch, 7402 Bonaduz, Switzerland
| | - Aude Garnero
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Dominik Novonti
- Department of Medical Research, Hamilton Medical, 8 via Crusch, 7402 Bonaduz, Switzerland
| | - Didier Demory
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Laurent Ducros
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Audrey Berric
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Stéphane Yannis Donati
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Gaëlle Corno
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| | - Samir Jaber
- Hôpital Saint Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Jacques Durand-Gasselin
- Service de Réanimation Polyvalente, Hôpital Sainte Musse, 54 avenue Henri Sainte Claire Deville, 83056 Toulon, France
| |
Collapse
|
43
|
A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application. J Clin Monit Comput 2013; 28:487-98. [PMID: 23892513 DOI: 10.1007/s10877-013-9489-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.
Collapse
|
44
|
Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children. Cochrane Database Syst Rev 2013:CD009235. [PMID: 23740737 DOI: 10.1002/14651858.cd009235.pub2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Automated closed loop systems may improve adaptation of the mechanical support to a patient's ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. OBJECTIVES To compare the duration of weaning from mechanical ventilation for critically ill ventilated adults and children when managed with automated closed loop systems versus non-automated strategies. Secondary objectives were to determine differences in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2); MEDLINE (OvidSP) (1948 to August 2011); EMBASE (OvidSP) (1980 to August 2011); CINAHL (EBSCOhost) (1982 to August 2011); and the Latin American and Caribbean Health Sciences Literature (LILACS). In addition we received and reviewed auto-alerts for our search strategy in MEDLINE, EMBASE, and CINAHL up to August 2012. Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles. SELECTION CRITERIA We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an intensive care unit (ICU). DATA COLLECTION AND ANALYSIS Two authors independently extracted study data and assessed risk of bias. We combined data into forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria. MAIN RESULTS Pooled data from 15 eligible trials (14 adult, one paediatric) totalling 1173 participants (1143 adults, 30 children) indicated that automated closed loop systems reduced the geometric mean duration of weaning by 32% (95% CI 19% to 46%, P = 0.002), however heterogeneity was substantial (I(2) = 89%, P < 0.00001). Reduced weaning duration was found with mixed or medical ICU populations (43%, 95% CI 8% to 65%, P = 0.02) and Smartcare/PS™ (31%, 95% CI 7% to 49%, P = 0.02) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (17%, 95% CI 8% to 26%) and ICU length of stay (LOS) (11%, 95% CI 0% to 21%). There was no difference in mortality rates or hospital LOS. Overall the quality of evidence was high with the majority of trials rated as low risk. AUTHORS' CONCLUSIONS Automated closed loop systems may result in reduced duration of weaning, ventilation, and ICU stay. Reductions are more likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Collapse
Affiliation(s)
- Louise Rose
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med 2013; 39:463-71. [PMID: 23338569 DOI: 10.1007/s00134-012-2799-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Discrepancies between the demand and availability of clinicians to care for mechanically ventilated patients can be anticipated due to an aging population and to increasing severity of illness. The use of closed-loop ventilation provides a potential solution. The aim of the study was to evaluate the safety of a fully automated ventilator. METHODS We conducted a randomized controlled trial comparing automated ventilation (AV) and protocolized ventilation (PV) in 60 ICU patients after cardiac surgery. In the PV group, tidal volume, respiratory rate, FiO(2) and positive end-expiratory pressure (PEEP) were set according to the local hospital protocol based on currently available guidelines. In the AV group, only sex, patient height and a maximum PEEP level of 10 cmH(2)O were set. The primary endpoint was the duration of ventilation within a "not acceptable" range of tidal volume. Zones of optimal, acceptable and not acceptable ventilation were based on several respiratory parameters and defined a priori. RESULTS The patients were assigned equally to each group, 30 to PV and 30 to AV. The percentage of time within the predefined zones of optimal, acceptable and not acceptable ventilation were 12 %, 81 %, and 7 % respectively with PV, and 89.5 %, 10 % and 0.5 % with AV (P < 0.001). There were 148 interventions required during PV compared to only 5 interventions with AV (P < 0.001). CONCLUSION Fully AV was safe in hemodynamically stable patients immediately following cardiac surgery. In addition to a reduction in the number of interventions, the AV system maintained patients within a predefined target range of optimal ventilation.
Collapse
|
47
|
Year in review in Intensive Care Medicine 2012: III. Noninvasive ventilation, monitoring and patient-ventilator interactions, acute respiratory distress syndrome, sedation, paediatrics and miscellanea. Intensive Care Med 2013; 39:543-57. [PMID: 23338570 PMCID: PMC3607729 DOI: 10.1007/s00134-012-2807-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/28/2022]
|
48
|
Ventilation mécanique: techniques. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Prophylactic protective ventilation: lower tidal volumes for all critically ill patients? Intensive Care Med 2012; 39:6-15. [PMID: 23108608 DOI: 10.1007/s00134-012-2728-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022]
Abstract
High tidal volumes have historically been recommended for mechanically ventilated patients during general anesthesia. High tidal volumes have been shown to increase morbidity and mortality in patients suffering from acute respiratory distress syndrome (ARDS). Barriers exist in implementing a tidal volume reduction strategy related to the inherent difficulty in changing one's practice patterns, to the current need to individualize low tidal volume settings only for a specific subgroup of mechanically ventilated patients (i.e., ARDS patients), the difficulty in determining the predicated body weight (requiring the patient's height and a complex formula). Consequently, a protective ventilation strategy is often under-utilized as a therapeutic option, even in ARDS. Recent data supports the generalization of this strategy prophylactically to almost all mechanically ventilated patients beginning immediately following intubation. Using tools to rapidly and reliably determine the predicted body weight (PBW), as well as the use of automated modes of ventilation are some of the potential solutions to facilitate the practice of protective ventilation and to finally ventilate our patients' lungs in a more gentle fashion to help prevent ARDS.
Collapse
|
50
|
Jouvet P, Eddington A, Payen V, Bordessoule A, Emeriaud G, Gasco RL, Wysocki M. A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R85. [PMID: 22591622 PMCID: PMC3580628 DOI: 10.1186/cc11343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/16/2012] [Indexed: 12/27/2022]
Abstract
Introduction The present study is a pilot prospective safety evaluation of a new closed loop computerised protocol on ventilation and oxygenation in stable, spontaneously breathing children weighing more than 7 kg, during the weaning phase of mechanical ventilation. Methods Mechanically ventilated children ready to start the weaning process were ventilated for five periods of 60 minutes in the following order: pressure support ventilation, adaptive support ventilation (ASV), ASV plus a ventilation controller (ASV-CO2), ASV-CO2 plus an oxygenation controller (ASV-CO2-O2) and pressure support ventilation again. Based on breath-by-breath analysis, the percentage of time with normal ventilation as defined by a respiratory rate between 10 and 40 breaths/minute, tidal volume > 5 ml/kg predicted body weight and end-tidal CO2 between 25 and 55 mmHg was determined. The number of manipulations and changes on the ventilator were also recorded. Results Fifteen children, median aged 45 months, were investigated. No adverse event and no premature protocol termination were reported. ASV-CO2 and ASV-CO2-O2 kept the patients within normal ventilation for, respectively, 94% (91 to 96%) and 94% (87 to 96%) of the time. The tidal volume, respiratory rate, peak inspiratory airway pressure and minute ventilation were equivalent for all modalities, although there were more automatic setting changes in ASV-CO2 and ASV-CO2-O2. Positive end-expiratory pressure modifications by ASV-CO2-O2 require further investigation. Conclusion Over the short study period and in this specific population, ASV-CO2 and ASV-CO2-O2 were safe and kept the patient under normal ventilation most of the time. Further research is needed, especially for positive end-expiratory pressure modifications by ASV-CO2-O2. Trial registration ClinicalTrials.gov: NCT01095406
Collapse
|