2
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brakenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. TEMPORAL CHANGES IN INNATE AND ADAPTIVE IMMUNITY DURING SEPSIS AS DETERMINED BY ELISPOT. Shock 2024; 62:255-264. [PMID: 38754032 PMCID: PMC11348958 DOI: 10.1097/shk.0000000000002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Background: The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The enzyme-linked immunospot (ELISpot) assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis that the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods: Mice were made septic using sublethal cecal ligation and puncture. Blood and spleens were harvested serially, and ex vivo interferon γ and TNF-α production were compared by ELISpot and enzyme-linked immunosorbent assay. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results: ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example, dexamethasone, arginine, and IL-7, in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and enzyme-linked immunosorbent assay results tended to parallel one another although some differences were noted. Conclusion: ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dale Osborne
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew H Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Han
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Sheets
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Monty B Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kenneth E Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine
| | | | - Scott C Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington
| | - Isaiah Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Kreitmann L, Helms J, Martin-Loeches I, Salluh J, Poulakou G, Pène F, Nseir S. ICU-acquired infections in immunocompromised patients. Intensive Care Med 2024; 50:332-349. [PMID: 38197931 DOI: 10.1007/s00134-023-07295-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 01/11/2024]
Abstract
Immunocompromised patients account for an increasing proportion of the typical intensive care unit (ICU) case-mix. Because of the increased availability of new drugs for cancer and auto-immune diseases, and improvement in the care of the most severely immunocompromised ICU patients (including those with hematologic malignancies), critically ill immunocompromised patients form a highly heterogeneous patient population. Furthermore, a large number of ICU patients with no apparent immunosuppression also harbor underlying conditions altering their immune response, or develop ICU-acquired immune deficiencies as a result of sepsis, trauma or major surgery. While infections are associated with significant morbidity and mortality in immunocompromised critically ill patients, little specific data are available on the incidence, microbiology, management and outcomes of ICU-acquired infections in this population. As a result, immunocompromised patients are usually excluded from trials and guidelines on the management of ICU-acquired infections. The most common ICU-acquired infections in immunocompromised patients are ventilator-associated lower respiratory tract infections (which include ventilator-associated pneumonia and tracheobronchitis) and bloodstream infections. Recently, several large observational studies have shed light on some of the epidemiological specificities of these infections-as well as on the dynamics of colonization and infection with multidrug-resistant bacteria-in these patients, and these will be discussed in this review. Immunocompromised patients are also at higher risk than non-immunocompromised hosts of fungal and viral infections, and the diagnostic and therapeutic management of these infections will be covered. Finally, we will suggest some important areas of future investigation.
Collapse
Affiliation(s)
- Louis Kreitmann
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London, UK
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Julie Helms
- Service de Médecine Intensive-Réanimation, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l'Hôpital, 67091, Strasbourg Cedex, France
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Leinster, D08NYH1, Dublin, Ireland
- Pulmonary Intensive Care Unit, Respiratory Institute, Hospital Clinic of Barcelona, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, ICREA CIBERes, 08380, Barcelona, Spain
| | - Jorge Salluh
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Frédéric Pène
- Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Saad Nseir
- Médecine Intensive-Réanimation, CHU de Lille, 59000, Lille, France.
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, 59000, Lille, France.
| |
Collapse
|
4
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brackenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. Temporal Changes in Innate and Adaptive Immunity During Sepsis as Determined by ELISpot. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571668. [PMID: 38168302 PMCID: PMC10760123 DOI: 10.1101/2023.12.14.571668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and ex vivo IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. Conclusion ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
|
5
|
Tawfik DM, Vachot L, Bocquet A, Venet F, Rimmelé T, Monneret G, Blein S, Montgomery JL, Hemmert AC, Pachot A, Moucadel V, Yugueros-Marcos J, Brengel-Pesce K, Mallet F, Textoris J. Immune Profiling Panel: A Proof-of-Concept Study of a New Multiplex Molecular Tool to Assess the Immune Status of Critically Ill Patients. J Infect Dis 2021; 222:S84-S95. [PMID: 32691839 PMCID: PMC7372218 DOI: 10.1093/infdis/jiaa248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). METHODS A new multiplex immune profiling panel (IPP) prototype was assessed for its ability to semiquantify messenger RNA immune-related markers directly from blood, using the FilmArray System, in less than an hour. Samples from 30 healthy volunteers were used for the technical assessment of the IPP tool. Then the tool was clinically assessed using samples from 10 healthy volunteers and 20 septic shock patients stratified using human leukocyte antigen-DR expression on monocytes (mHLA-DR). RESULTS The IPP prototype consists of 16 biomarkers that target the immune response. The majority of the assays had a linear expression with different RNA inputs and a coefficient of determination (R2) > 0.8. Results from the IPP pouch were comparable to standard quantitative polymerase chain reaction and the assays were within the limits of agreement in Bland-Altman analysis. Quantification cycle values of the target genes were normalized against reference genes and confirmed to account for the different cell count and technical variability. The clinical assessment of the IPP markers demonstrated various gene modulations that could distinctly differentiate 3 profiles: healthy volunteers, intermediate mHLA-DR septic shock patients, and low mHLA-DR septic shock patients. CONCLUSIONS The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.
Collapse
Affiliation(s)
- Dina M Tawfik
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Laurence Vachot
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | - Fabienne Venet
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sophie Blein
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | | | - Alexandre Pachot
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Virginie Moucadel
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | - Karen Brengel-Pesce
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - François Mallet
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Julien Textoris
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France.,Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|