1
|
Monnet X, Lai C, De Backer D. Why do we use transpulmonary thermodilution and pulmonary artery catheter in severe shock patients? Ann Intensive Care 2025; 15:7. [PMID: 39808220 PMCID: PMC11732821 DOI: 10.1186/s13613-024-01400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
| | - Christopher Lai
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Monnet X, De Backer D, Pinsky MR. Using the ventilator to predict fluid responsiveness. Intensive Care Med 2025; 51:150-153. [PMID: 39680080 PMCID: PMC11787196 DOI: 10.1007/s00134-024-07708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Xavier Monnet
- Service de Médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
An R, Wan XX, Chen Y, Dong R, Wang CY, Jiang W, Weng L, Du B. Central venous oxygen saturation changes as a reliable predictor of the change of CI in septic shock: To explore potential influencing factors. Chin J Traumatol 2025; 28:43-49. [PMID: 38789315 DOI: 10.1016/j.cjtee.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Assessing fluid responsiveness relying on central venous oxygen saturation (ScvO2) yields varied outcomes across several studies. This study aimed to determine the ability of the change in ScvO2 (ΔScvO2) to detect fluid responsiveness in ventilated septic shock patients and potential influencing factors. METHODS In this prospective, single-center study, all patients conducted from February 2023 to January 2024 received fluid challenge. Oxygen consumption was measured by indirect calorimetry, and fluid responsiveness was defined as an increase in cardiac index (CI) ≥ 10% measured by transthoracic echocardiography. Multivariate linear regression analysis was conducted to evaluate the impact of oxygen consumption, arterial oxygen saturation, CI, and hemoglobin on ScvO2 and its change before and after fluid challenge. The Shapiro-Wilk test was used for the normality of continuous data. Data comparison between fluid responders and non-responders was conducted using a two-tailed Student t-test, Mann Whitney U test, and Chi-square test. Paired t-tests were used for normally distributed data, while the Wilcoxon signed-rank test was used for skewed data, to compare data before and after fluid challenge. RESULTS Among 49 patients (31 men, aged (59 ± 18) years), 27 were responders. The patients had an acute physiology and chronic health evaluation II score of 24 ± 8, a sequential organ failure assessment score of 11 ± 4, and a blood lactate level of (3.2 ± 3.1) mmol/L at enrollment. After the fluid challenge, the ΔScvO2 (mmHg) in the responders was greater than that in the non-responders (4 ± 6 vs. 1 ± 3, p = 0.019). Multivariate linear regression analysis suggested that CI was the only independent influencing factor of ScvO2, with R2 = 0.063, p = 0.008. After the fluid challenge, the change in CI became the only contributing factor to ΔScvO2 (R2 = 0.245, p < 0.001). ΔScvO2 had a good discriminatory ability for the responders and non-responders with a threshold of 4.4% (area under the curve = 0.732, p = 0.006). CONCLUSION ΔScvO2 served as a reliable surrogate marker for ΔCI and could be utilized to assess fluid responsiveness, given that the change in CI was the sole contributing factor to the ΔScvO2. In stable hemoglobin conditions, the absolute value of ScvO2 could serve as a monitoring indicator for adequate oxygen delivery independent of oxygen consumption.
Collapse
Affiliation(s)
- Ran An
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xi-Xi Wan
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang province, China
| | - Yan Chen
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Run Dong
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chun-Yao Wang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Jiang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bin Du
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Nasa P, Wise R, Malbrain MLNG. Fluid management in the septic peri-operative patient. Curr Opin Crit Care 2024; 30:664-671. [PMID: 39248089 DOI: 10.1097/mcc.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW This review provides insight into recent clinical studies involving septic peri-operative patients and highlights gaps in understanding fluid management. The aim is to enhance the understanding of safe fluid resuscitation to optimize peri-operative outcomes and reduce complications. RECENT FINDINGS Recent research shows adverse surgical and clinical outcomes with both under- and over-hydration of peri-operative patients. The kinetic of intravenous fluids varies significantly during surgery, general anaesthesia, and sepsis with damage to endothelial glycocalyx (EG), which increases vascular permeability and interstitial oedema. Among clinical anaesthesia, neuraxial anaesthesia and sevoflurane have less effect on EG. Hypervolemia and the speed and volume of fluid infusion are also linked to EG shedding. Despite improvement in the antisepsis strategies, peri-operative sepsis is not uncommon. Fluid resuscitation is the cornerstone of sepsis management. However, overzealous fluid resuscitation is associated with increased mortality in patients with sepsis and septic shock. Personalized fluid resuscitation based on a careful assessment of intravascular volume status, dynamic haemodynamic variables and fluid tolerance appears to be a safe approach. Balanced solutions (BS) are preferred over 0.9% saline in patients with sepsis and septic shock due to a potential reduction in mortality, when exclusive BS are used and/or large volume of fluids are required for fluid resuscitation. Peri-operative goal-directed fluid therapy (GDFT) using dynamic haemodynamic variables remains an area of interest in reducing postoperative complications and can be considered for sepsis management (Supplementary Digital Content). SUMMARY Optimization of peri-operative fluid management is crucial for improving surgical outcomes and reducing postoperative complications in patients with sepsis. Individualized and GDFT using BS is the preferred approach for fluid resuscitation in septic peri-operative patients. Future research should evaluate the interaction between clinical anaesthesia and EG, its implications on fluid resuscitation, and the impact of GDFT in septic peri-operative patients.
Collapse
Affiliation(s)
- Prashant Nasa
- Department of Critical Care Medicine and Anaesthesia, The Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton, UK
| | - Robert Wise
- Discipline of Anesthesiology and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Adult Intensive Care, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- Medical Data Management, Medaman, Geel
- International Fluid Academy, Lovenjoel, Belgium
| |
Collapse
|
5
|
Pinsky MR, Gomez H, Wertz A, Leonard J, Dubrawski A, Poropatich R. Evaluation of a Physiologic-Driven Closed-Loop Resuscitation Algorithm in an Animal Model of Hemorrhagic Shock. Crit Care Med 2024; 52:1947-1957. [PMID: 39436216 DOI: 10.1097/ccm.0000000000006297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVES Appropriate resuscitation from hemorrhagic shock is critical to restore tissue perfusion and to avoid over-resuscitation. The objective of this study was to test the ability of a closed-loop diagnosis and resuscitation algorithm called resuscitation from shock using functional hemodynamic monitoring using invasive monitoring (ReFit1) and minimally invasive monitoring (ReFit2) to identify, treat, and stabilize a porcine model of severe hemorrhagic shock. DESIGN We created a ReFit algorithm using dynamic hemodynamic parameters of pulse pressure variation (PPV), stroke volume variation (SVV), dynamic arterial elastance (Ea dyn = PPV/SVV), driven by mean arterial pressure (MAP), mixed venous oxygen saturation, and heart rate targets to define the need for fluids, vasopressors, and inotropes. SETTING University-based animal laboratory. SUBJECTS Twenty-seven female pigs. INTERVENTIONS Anesthetized, intubated, and ventilated (8 mL/kg) pigs were bled at 10 mL/min until a MAP of less than 40 mm Hg, held for 30 minutes, then resuscitated. The ReFit algorithm used the above dynamic parameters to drive computer-controlled infusion pumps to deliver blood, lactated Ringer's solution, norepinephrine, and in ReFit1 dobutamine. In four animals, after initial resuscitation from hemorrhagic shock, the ability of the ReFit1 algorithm to treat acute air embolism-induced pulmonary hypertension and right heart failure was also tested. MAIN RESULTS In 10 ReFit1 and 17 ReFit2 animals, the time to stabilization from shock was not dissimilar to open controlled resuscitation performed by an expert physician (52 ± 12, 50 ± 13, and 60 ± 15 min, respectively) with similar amounts of fluids and norepinephrine needed. In four ReFit1 animals after initial stabilization, the algorithm successfully resuscitated the animals after inducing an acute air embolism right heart failure, with all animals recovering stability within 30 minutes. CONCLUSIONS Our physiologically based functional hemodynamic monitoring-centered closed-loop resuscitation system can effectively diagnose and treat cardiovascular shock due to hemorrhage and air embolism.
Collapse
Affiliation(s)
- Michael R Pinsky
- Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA
| | - Hernando Gomez
- Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA
| | - Anthony Wertz
- Auton Laboratory, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Jim Leonard
- Auton Laboratory, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Artur Dubrawski
- Auton Laboratory, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Ronald Poropatich
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Diaztagle Fernández JJ, Castañeda-González JP, Trujillo Zambrano JI, Duarte Martínez FE, Saavedra Ortiz MÁ. Assessment of the shock index in septic shock: A systematic review. Med Intensiva 2024; 48:e10-e19. [PMID: 39054217 DOI: 10.1016/j.medine.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To identify published research on the Shock Index (SI) in patients with septic shock or severe sepsis and to describe its main findings and conclusions. DESIGN Systematic review of the literature following the recommendations of the PRISMA protocol (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). SETTINGS The following databases were consulted: Pubmed, Embase, Library Cochrane and Lilacs. PATIENTS Patients older than 14 years with septic shock. Pregnant women and population with COVID-19 were excluded. INTERVENTIONS Studies reporting measurement of the shock index or its modified variants. MAIN VARIABLES OF INTEREST Absolute frequencies and relative frequencies were assessed with measures of central tendency and dispersion. Effect estimators (OR, RR and HR) were extracted according to the context of each study. RESULTS Seventeen articles were included, of which 11 investigated the SI as a predictor of mortality. Seven of them found significant differences in the SI when comparing survivors to non-survivors and observed a relationship between the SI evolution and clinical outcomes. Additional research evidenced a relation between the Modified Shock Index and myocardial depression, as well as mortality. Furthermore, they identified a relationship between the Diastolic Shock Index, the dose of administered dobutamine, and mortality. CONCLUSIONS The results suggest that both the SI and its modified versions, particularly in serial assessments, can be considered for evaluating patient prognosis. The SI can also aid in determining fluid management for patients.
Collapse
Affiliation(s)
- Juan José Diaztagle Fernández
- Servicio de Medicina Interna, Fundación Universitaria de Ciencias de la Salud - FUCS, Hospital de San José de Bogotá. Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Juan Pablo Castañeda-González
- Semillero de Investigación en Medicina Interna, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | | | | | | |
Collapse
|
7
|
Li L, Du L, Chen G, Zhang W, Du B, Zhang L, Zheng J. Stroke volume variation induced by lung recruitment maneuver to predict fluid responsiveness in patients receiving mechanical ventilation: A systematic review and meta-analysis. J Clin Anesth 2024; 97:111545. [PMID: 38971135 DOI: 10.1016/j.jclinane.2024.111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
STUDY OBJECTIVE The aim of this study was to evaluate the accuracy of lung recruitment maneuver induced stroke volume variation (ΔSVLRM) in predicting fluid responsiveness in mechanically ventilated adult patients by systematic review and meta-analysis. METHODS A comprehensive electronic search of relevant literature was conducted in PubMed, Web of Science, Cochrane Library, Ovid Medline, Embase and Chinese databases (including China National Knowledge Infrastructure, Wanfang and VIP databases). Review Manager 5.4, Meta-DiSc 1.4 and STATA 16.0 were selected for data analysis, and QUADAS-2 tool was used for quality assessment. Data from selected studies were pooled to obtain sensitivity, specificity, diagnostic likelihood ratio (DLR) of positive and negative, diagnostic odds ratio (DOR), and summary receiver operating characteristic curve. RESULTS A total of 6 studies with 256 patients were enrolled through March 2024. The risk of bias and applicability concerns for each included study were low, and there was no significant publication bias. There was moderate to substantial heterogeneity for the non-threshold effect, but not for the threshold effect. The combined sensitivity and specificity were 0.84 (95% CI, 0.77-0.90) and 0.79 (95% CI, 0.70-0.86), respectively. The DOR and the area under the curve (AUC) were 22.15 (95%CI, 7.62-64.34) and 0.90 (95% CI, 0.87-0.92), respectively. The positive and negative predictive values of DLR were 4.53 (95% CI, 2.50-8.18) and 0.19 (95% CI, 0.11-0.35), respectively. Fagan's nomogram showed that with a pre-test probability of 52%, the post-test probability reached 83% and 17% for the positive and negative tests, respectively. CONCLUSIONS Based on the currently available evidence, ΔSVLRM has a good diagnostic value for predicting the fluid responsiveness in adult patients undergoing mechanical ventilation. Given the heterogeneity and limitations of the published data, further studies with large sample sizes and different clinical settings are needed to confirm the diagnostic value of ΔSVLRM in predicting fluid responsiveness. PROSPERO registration number: CRD42023490598.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Li Du
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55th, People's South Road, Chengdu, Sichuan, China
| | - Guo Chen
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Bin Du
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Jianqiao Zheng
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Abedi F, Zarei B, Elyasi S. Albumin: a comprehensive review and practical guideline for clinical use. Eur J Clin Pharmacol 2024; 80:1151-1169. [PMID: 38607390 DOI: 10.1007/s00228-024-03664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Nowadays, it is largely accepted that albumin should not be used in hypoalbuminemia or for nutritional purpose. The most discussed indication of albumin at present is the resuscitation in shock states, especially distributive shocks such as septic shock. The main evidence-based indication is also liver disease. In this review, we provided updated evidence-based instruction for definite and potential indications of albumin administration in clinical practice, with appropriate dosing and duration. METHODS Data collection was carried out until November 2023 by search of electronic databases including PubMed, Google Scholar, Scopus, and Web of Science. GRADE system has been used to determine the quality of evidence and strength of recommendations for each albumin indication. RESULTS A total of 165 relevant studies were included in this review. Fluid replacement in plasmapheresis and liver diseases, including hepatorenal syndrome, spontaneous bacterial peritonitis, and large-volume paracentesis, have a moderate to high quality of evidence and a strong recommendation for administering albumin. Moreover, albumin is used as a second-line and adjunctive to crystalloids for fluid resuscitation in hypovolemic shock, sepsis and septic shock, severe burns, toxic epidermal necrolysis, intradialytic hypotension, ovarian hyperstimulation syndrome, major surgery, non-traumatic brain injury, extracorporeal membrane oxygenation, acute respiratory distress syndrome, and severe and refractory edema with hypoalbuminemia has a low to moderate quality of evidence and weak recommendation to use. Also, in modest volume paracentesis, severe hyponatremia in cirrhosis has a low to moderate quality of evidence and a weak recommendation. CONCLUSION Albumin administration is most indicated in management of cirrhosis complications. Fluid resuscitation or treatment of severe and refractory edema, especially in patients with hypoalbuminemia and not responding to other treatments, is another rational use for albumin. Implementation of evidence-based guidelines in hospitals can be an effective measure to reduce inappropriate uses of albumin.
Collapse
Affiliation(s)
- Farshad Abedi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Batool Zarei
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran.
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran.
| |
Collapse
|
9
|
Pinsky MR, Gomez H, Guyette FX, Weiss L, Dubrawski A, Leonard J, MacLachlan R, Gordon L, Lagattuta T, Salcido D, Poropatich R. Autonomous precision resuscitation during ground and air transport of an animal hemorrhagic shock model. Intensive Care Med Exp 2024; 12:44. [PMID: 38782787 PMCID: PMC11116353 DOI: 10.1186/s40635-024-00628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
We tested the ability of a physiologically driven minimally invasive closed-loop algorithm, called Resuscitation based on Functional Hemodynamic Monitoring (ReFit), to stabilize for up to 3 h a porcine model of noncompressible hemorrhage induced by severe liver injury and do so during both ground and air transport. Twelve animals were resuscitated using ReFit to drive fluid and vasopressor infusion to a mean arterial pressure (MAP) > 60 mmHg and heart rate < 110 min-1 30 min after MAP < 40 mmHg following liver injury. ReFit was initially validated in 8 animals in the laboratory, then in 4 animals during air (23nm and 35nm) and ground (9 mi) to air (9.5nm and 83m) transport returning to the laboratory. The ReFit algorithm kept all animals stable for ~ 3 h. Thus, ReFit algorithm can diagnose and treat ongoing hemorrhagic shock independent to the site of care or during transport. These results have implications for treatment of critically ill patients in remote, austere and contested environments and during transport to a higher level of care.
Collapse
Affiliation(s)
- Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Hernando Gomez
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leonard Weiss
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Artur Dubrawski
- Auton Lab, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Jim Leonard
- Auton Lab, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Robert MacLachlan
- Auton Lab, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Lisa Gordon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Theodore Lagattuta
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - David Salcido
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Poropatich
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Gendreau S, Frapard T, Carteaux G, Kwizera A, Adhikari NKJ, Mer M, Hernandez G, Mekontso Dessap A. Geo-economic Influence on the Effect of Fluid Volume for Sepsis Resuscitation: A Meta-Analysis. Am J Respir Crit Care Med 2024; 209:517-528. [PMID: 38259196 DOI: 10.1164/rccm.202309-1617oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024] Open
Abstract
Rationale: Sepsis management relies on fluid resuscitation avoiding fluid overload and its related organ congestion. Objectives: To explore the influence of country income group on risk-benefit balance of fluid management strategies in sepsis. Methods: We searched e-databases for all randomized controlled trials on fluid resuscitation in patients with sepsis or septic shock up to January 2023, excluding studies on hypertonic fluids, colloids, and depletion-based interventions. The effect of fluid strategies (higher versus lower volumes) on mortality was analyzed per income group (i.e., low- and middle-income countries [LMICs] or high-income countries [HICs]). Measurements and Main Results: Twenty-nine studies (11,798 patients) were included in the meta-analysis. There was a numerically higher mortality in studies of LMICs as compared with those of HICs: median, 37% (interquartile range [IQR]: 26-41) versus 29% (IQR: 17-38; P = 0.06). Income group significantly interacted with the effect of fluid volume on mortality: Higher fluid volume was associated with higher mortality in LMICs but not in HICs: odds ratio (OR), 1.47; 95% confidence interval (95% CI): 1.14-1.90 versus 1.00 (95% CI: 0.87-1.16), P = 0.01 for subgroup differences. Higher fluid volume was associated with increased need for mechanical ventilation in LMICs (OR, 1.24 [95% CI: 1.08-1.43]) but not in HICs (OR, 1.02 [95% CI: 0.80-1.29]). Self-reported access to mechanical ventilation also significantly influenced the effect of fluid volume on mortality, which increased with higher volumes only in settings with limited access to mechanical ventilation (OR: 1.45 [95% CI: 1.09-1.93] vs. 1.09 [95% CI: 0.93-1.28], P = 0.02 for subgroup differences). Conclusions: In sepsis trials, the effect of fluid resuscitation approach differed by setting, with higher volume of fluid resuscitation associated with increased mortality in LMICs and in settings with restricted access to mechanical ventilation. The precise reason for these differences is unclear and may be attributable in part to resource constraints, participant variation between trials, or other unmeasured factors.
Collapse
Affiliation(s)
- Ségolène Gendreau
- Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Medecine Intensive Réanimation, Créteil, France
- Institut Mondor de Recherche Biomédicale, Groupe de recherche clinique CARMAS, Faculté de Santé de Créteil, Université Paris est Créteil, Créteil, France
| | - Thomas Frapard
- Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Medecine Intensive Réanimation, Créteil, France
- Institut Mondor de Recherche Biomédicale, Groupe de recherche clinique CARMAS, Faculté de Santé de Créteil, Université Paris est Créteil, Créteil, France
| | - Guillaume Carteaux
- Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Medecine Intensive Réanimation, Créteil, France
- Institut Mondor de Recherche Biomédicale, Groupe de recherche clinique CARMAS, Faculté de Santé de Créteil, Université Paris est Créteil, Créteil, France
- INSERM U955, Faculté de Santé de Créteil, Université Paris Est Créteil, Créteil, France
| | - Arthur Kwizera
- Department of Anaesthesia and Critical Care, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Neill K J Adhikari
- Sunnybrook Health Sciences Centre and Interdepartmental Division of Critical Care Medicine, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mervyn Mer
- Divisions of Critical Care and Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Glenn Hernandez
- Facultad de Medicina, Departamento de Medicina Intensiva, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Armand Mekontso Dessap
- Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Medecine Intensive Réanimation, Créteil, France
- Institut Mondor de Recherche Biomédicale, Groupe de recherche clinique CARMAS, Faculté de Santé de Créteil, Université Paris est Créteil, Créteil, France
- INSERM U955, Faculté de Santé de Créteil, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
11
|
Muñoz F, Born P, Bruna M, Ulloa R, González C, Philp V, Mondaca R, Blanco JP, Valenzuela ED, Retamal J, Miralles F, Wendel-Garcia PD, Ospina-Tascón GA, Castro R, Rola P, Bakker J, Hernández G, Kattan E. Coexistence of a fluid responsive state and venous congestion signals in critically ill patients: a multicenter observational proof-of-concept study. Crit Care 2024; 28:52. [PMID: 38374167 PMCID: PMC10877871 DOI: 10.1186/s13054-024-04834-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Current recommendations support guiding fluid resuscitation through the assessment of fluid responsiveness. Recently, the concept of fluid tolerance and the prevention of venous congestion (VC) have emerged as relevant aspects to be considered to avoid potentially deleterious side effects of fluid resuscitation. However, there is paucity of data on the relationship of fluid responsiveness and VC. This study aims to compare the prevalence of venous congestion in fluid responsive and fluid unresponsive critically ill patients after intensive care (ICU) admission. METHODS Multicenter, prospective cross-sectional observational study conducted in three medical-surgical ICUs in Chile. Consecutive mechanically ventilated patients that required vasopressors and admitted < 24 h to ICU were included between November 2022 and June 2023. Patients were assessed simultaneously for fluid responsiveness and VC at a single timepoint. Fluid responsiveness status, VC signals such as central venous pressure, estimation of left ventricular filling pressures, lung, and abdominal ultrasound congestion indexes and relevant clinical data were collected. RESULTS Ninety patients were included. Median age was 63 [45-71] years old, and median SOFA score was 9 [7-11]. Thirty-eight percent of the patients were fluid responsive (FR+), while 62% were fluid unresponsive (FR-). The most prevalent diagnosis was sepsis (41%) followed by respiratory failure (22%). The prevalence of at least one VC signal was not significantly different between FR+ and FR- groups (53% vs. 57%, p = 0.69), as well as the proportion of patients with 2 or 3 VC signals (15% vs. 21%, p = 0.4). We found no association between fluid balance, CRT status, or diagnostic group and the presence of VC signals. CONCLUSIONS Venous congestion signals were prevalent in both fluid responsive and unresponsive critically ill patients. The presence of venous congestion was not associated with fluid balance or diagnostic group. Further studies should assess the clinical relevance of these results and their potential impact on resuscitation and monitoring practices.
Collapse
Affiliation(s)
- Felipe Muñoz
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Pablo Born
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Mario Bruna
- Unidad de Cuidados Intensivos, Hospital de Quilpué, Quilpué, Chile
| | - Rodrigo Ulloa
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile
| | - Cecilia González
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Valerie Philp
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Roberto Mondaca
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Juan Pablo Blanco
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Emilio Daniel Valenzuela
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | | | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gustavo A Ospina-Tascón
- Department of Intensive Care Medicine, Fundación Valle del Lili, Cali, Colombia
- Translational Research Laboratory in Critical Care Medicine (TransLab-CCM), Universidad Icesi, Cali, Colombia
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Philippe Rola
- Intensive Care Unit, Hopital Santa Cabrini, CIUSSS EMTL, Montreal, Canada
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, USA
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Diagonal Paraguay 362, Santiago, Chile.
| |
Collapse
|
12
|
Abstract
Perioperative oliguria is an alarm signal. The initial assessment includes closer patient monitoring, evaluation of volemic status, risk-benefit of fluid challenge or furosemide stress test, and investigation of possible perioperative complications.
Collapse
Affiliation(s)
- Roberta T. Tallarico
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California San Francisco
| | - Ian E. McCoy
- Department of Medicine, Division of Nephrology, University of California San Francisco
| | - Francois Dépret
- Department of Anesthesiology and Critical Care Medicine, St-Louis Hospital, Assistance-Publique Hopitaux de Paris, France
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California San Francisco
| |
Collapse
|
13
|
Deslarzes P, Jurt J, Larson DW, Blanc C, Hübner M, Grass F. Perioperative Fluid Management in Colorectal Surgery: Institutional Approach to Standardized Practice. J Clin Med 2024; 13:801. [PMID: 38337495 PMCID: PMC10856154 DOI: 10.3390/jcm13030801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The present review discusses restrictive perioperative fluid protocols within enhanced recovery after surgery (ERAS) pathways. Standardized definitions of a restrictive or liberal fluid regimen are lacking since they depend on conflicting evidence, institutional protocols, and personal preferences. Challenges related to restrictive fluid protocols are related to proper patient selection within standardized ERAS protocols. On the other hand, invasive goal-directed fluid therapy (GDFT) is reserved for more challenging disease presentations and polymorbid and frail patients. While the perfusion rate (mL/kg/h) appears less predictive for postoperative outcomes, the authors identified critical thresholds related to total intravenous fluids and weight gain. These thresholds are discussed within the available evidence. The authors aim to introduce their institutional approach to standardized practice.
Collapse
Affiliation(s)
- Philip Deslarzes
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (P.D.); (J.J.); (M.H.)
| | - Jonas Jurt
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (P.D.); (J.J.); (M.H.)
| | - David W. Larson
- Division of Colon and Rectal Surgery, Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Catherine Blanc
- Department of Anesthesiology, Lausanne University Hospital CHUV, University of Lausanne (UNIL), 1005 Lausanne, Switzerland;
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (P.D.); (J.J.); (M.H.)
| | - Fabian Grass
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (P.D.); (J.J.); (M.H.)
| |
Collapse
|
14
|
Messina A, Uryga A, Giardina A, Ciliberti P, Battaglini D, Patroniti N, Czosnyka M, Monnet X, Cecconi M, Robba C. The effect of passive leg raising test on intracranial pressure and cerebral autoregulation in brain injured patients: a physiological observational study. Crit Care 2024; 28:23. [PMID: 38229147 PMCID: PMC10790469 DOI: 10.1186/s13054-023-04785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The use of the passive leg raising (PLR) is limited in acute brain injury (ABI) patients with increased intracranial pressure (ICP) since the postural change of the head may impact on ICP and cerebral autoregulation. However, the PLR use may prevent a positive daily fluid balance, which had been recently associated to worse neurological outcomes. We therefore studied early and delayed effects of PLR on the cerebral autoregulation of patients recovering from ABI. MATERIALS AND METHODS This is a Prospective, observational, single-center study conducted in critically ill patients admitted with stable ABI and receiving invasive ICP monitoring, multimodal neuromonitoring and continuous hemodynamic monitoring. The fluid challenge consisted of 500 mL of crystalloid over 10 min; fluid responsiveness was defined as cardiac index increase ≥ 10%. Comparisons between different variables at baseline and after PLR were made by paired Wilcoxon signed-rank test. The correlation coefficients between hemodynamic and neuromonitoring variables were assessed using Spearman's rank test. RESULTS We studied 23 patients [12 patients (52.2%) were fluid responders]. The PLR significantly increased ICP [from 13.7 (8.3-16.4) to 15.4 (12.0-19.2) mmHg; p < 0.001], cerebral perfusion pressure (CPP) [from 51.1 (47.4-55.6) to 56.4 (49.6-61.5) mmHg; p < 0.001] and the pressure reactivity index (PRx) [from 0.12 (0.01-0.24) to 0.43 (0.34-0.46) mmHg; p < 0.001]. Regarding Near Infrared Spectroscopy (NIRS)-derived parameters, PLR significantly increased the arterial component of regional cerebral oxygen saturation (O2Hbi) [from 1.8 (0.8-3.7) to 4.3 (2.5-5.6) μM cm; p < 0.001], the deoxygenated hemoglobin (HHbi) [from 1.6 (0.2-2.9) to 2.7 (1.4-4.0) μM cm; p = 0.007] and total hemoglobin (cHbi) [from 3.6 (1.9-5.3) to 7.8 (5.2-10.3): p < 0.001]. In all the patients who had altered autoregulation after PLR, these changes persisted ten minutes afterwards. After the PLR, we observed a significant correlation between MAP and CPP and PRx. CONCLUSIONS In ABI patient with stable ICP, PLR test increased ICP, but mostly within safety values and thresholds. Despite this, cerebral autoregulation was importantly impaired, and this persisted up to 10 min after the end of the maneuvre. Our results discourage the use of PLR test in ABI even when ICP is stable.
Collapse
Affiliation(s)
- Antonio Messina
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy.
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Alberto Giardina
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| | - Pietro Ciliberti
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| | - Denise Battaglini
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Nicolo' Patroniti
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Addenbrooke's Hospital, Cambridge, UK
| | - Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Maurizio Cecconi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| |
Collapse
|
15
|
Kaufman DA, Lopes M, Maviya N, Magder SA. The Ins and Outs of IV Fluids in Hemodynamic Resuscitation. Crit Care Med 2023; 51:1397-1406. [PMID: 37707377 DOI: 10.1097/ccm.0000000000006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
OBJECTIVES Concise definitive review of the physiology of IV fluid (IVF) use in critically ill patients. DATA SOURCES Available literature on PubMed and MEDLINE databases. STUDY SELECTION Basic physiology studies, observational studies, clinical trials, and reviews addressing the physiology of IVF and their use in the critically ill were included. DATA EXTRACTION None. DATA SYNTHESIS We combine clinical and physiologic studies to form a framework for understanding rational and science-based use of fluids and electrolytes. CONCLUSIONS IVF administration is among the most common interventions for critically ill patients. IVF can be classified as crystalloids or colloids, and most crystalloids are sodium salts. They are frequently used to improve hemodynamics during shock states. Many recent clinical trials have sought to understand which kind of IVF might lead to better patient outcomes, especially in sepsis. Rational use of IVF rests on understanding the physiology of the shock state and what to expect IVF will act in those settings. Many questions remain unanswered, and future research should include a physiologic understanding of IVF in study design.
Collapse
Affiliation(s)
- David A Kaufman
- Division of Pulmonary and Critical Care Medicine, NYU Grossman School of Medicine, New York, NY
| | - Marcela Lopes
- Intensive Care Unit, Hospital da Cidade, Salvador, Bahia, Brazil
| | | | - Sheldon A Magder
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
16
|
Zhao Z, Zhang Z, Liu J, Xia Z, Xing Q, Zhang Y, Zheng Y, Shen L, Lin Q, Gu D, Wang P, Zhang S, Li F, Zhu B. Supine transfer test-induced changes in cardiac index predict fluid responsiveness in patients without intra-abdominal hypertension. BMC Anesthesiol 2023; 23:318. [PMID: 37723480 PMCID: PMC10506238 DOI: 10.1186/s12871-023-02280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The reversible maneuver that mimics the fluid challenge is a widely used test for evaluating volume responsiveness. However, passive leg raising (PLR) does have certain limitations. The aim of the study is to determine whether the supine transfer test could predict fluid responsiveness in adult patients with acute circulatory failure who do not have intra-abdominal hypertension, by measuring changes in cardiac index (CI). METHODS Single-center, prospective clinical study in a 25-bed surgery intensive care unit at the Fudan University Shanghai Cancer Center. Thirty-four patients who presented with acute circulatory failure and were scheduled for fluid therapy. Every patient underwent supine transfer test and fluid challenge with 500 mL saline for 15-30 min. There were four sequential steps in the protocol: (1) baseline-1: a semi-recumbent position with the head of the bed raised to 45°; (2) supine transfer test: patients were transferred from the 45° semi-recumbent position to the strict supine position; (3) baseline-2: return to baseline-1 position; and (4) fluid challenge: administration of 500 mL saline for 15-30 min. Hemodynamic parameters were recorded at each step with arterial pulse contour analysis (ProAQT/Pulsioflex). A fluid responder was defined as an increase in CI ≥ 15% after fluid challenge. The receiver operating characteristic curve and gray zone were defined for CI. RESULTS Seventeen patients were fluid challenge. The r value of the linear correlations was 0.73 between the supine transfer test- and fluid challenge-induced relative CI changes. The relative changes in CI induced by supine transfer in predicting fluid responsiveness had an area under the receiver operating characteristic curve of 0.88 (95% confidence interval 0.72-0.97) and predicted a fluid responder with 76.5% (95% confidence interval 50.1-93.2) sensitivity and 88.2% (95% confidence interval 63.6-98.5) specificity, at a best threshold of 5.5%. Nineteen (55%) patients were in the gray zone (CI ranging from -3 and 8 L/min/m2). CONCLUSION The supine transfer test can potentially assist in detecting fluid responsiveness in patients with acute circulatory failure without intra-abdominal hypertension. Nevertheless, the small threshold and the 55% gray zone were noteworthy limitation. TRIAL REGISTRATION Predicting fluid responsiveness with supine transition test (ChiCTR2200058264). Registered 2022-04-04 and last refreshed on 2023-03-26, https://www.chictr.org.cn/showproj.html?proj=166175 .
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhongwei Zhang
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Liu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhili Xia
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Xing
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaodong Zhang
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yijun Zheng
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihua Shen
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qionghua Lin
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danyan Gu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengmei Wang
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shan Zhang
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fangfang Li
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Biao Zhu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
de Carvalho EB, Battaglini D, Robba C, Malbrain MLNG, Pelosi P, Rocco PRM, Silva PL. Fluid management strategies and their interaction with mechanical ventilation: from experimental studies to clinical practice. Intensive Care Med Exp 2023; 11:44. [PMID: 37474816 PMCID: PMC10359242 DOI: 10.1186/s40635-023-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Patients on mechanical ventilation may receive intravenous fluids via restrictive or liberal fluid management. A clear and objective differentiation between restrictive and liberal fluid management strategies is lacking in the literature. The liberal approach has been described as involving fluid rates ranging from 1.2 to 12 times higher than the restrictive approach. A restrictive fluid management may lead to hypoperfusion and distal organ damage, and a liberal fluid strategy may result in endothelial shear stress and glycocalyx damage, cardiovascular complications, lung edema, and distal organ dysfunction. The association between fluid and mechanical ventilation strategies and how they interact toward ventilator-induced lung injury (VILI) could potentiate the damage. For instance, the combination of a liberal fluids and pressure-support ventilation, but not pressure control ventilation, may lead to further lung damage in experimental models of acute lung injury. Moreover, under liberal fluid management, the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the translational aspects of these findings are scarce. The aim of this narrative review is to provide better understanding of the interaction between different fluid and ventilation strategies and how these interactions may affect lung and distal organs. The weaning phase of mechanical ventilation and the deresuscitation phase are not explored in this review.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- University of Vassouras, Rio de Janeiro, Brazil
| | | | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Manu L. N. G. Malbrain
- First Department of Anesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- International Fluid Academy, Lovenjoel, Belgium
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Pan J, Sun Y, Xu Z, Dong P, Zhou X. Variation in central venous oxygen saturation to evaluate fluid responsiveness: a systematic review and meta-analysis. Crit Care 2023; 27:203. [PMID: 37237410 DOI: 10.1186/s13054-023-04480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Since oxygen content and oxygen consumption typically remain unchanged within a short period, variation in central venous oxygen saturation (ΔScvO2) during fluid challenge can theoretically track the changes in cardiac output (CO). We conducted this meta-analysis to systematically assess the diagnostic performance of ΔScvO2 during a fluid challenge for fluid responsiveness in mechanically ventilated patients receiving volume expansion. METHODS Electronic databases were systematically searched to identify relevant studies published before October 24, 2022. As the cutoff value of ΔScvO2 was expected to vary across the included studies, we estimated the area under the hierarchical summary receiver operating characteristic curve (AUHSROC) as the primary measure of diagnostic accuracy. The optimal threshold of ΔScvO2 and the corresponding 95% confidential interval (CI) were also estimated. RESULTS This meta-analysis included 5 observational studies comprising 240 participants, of whom 133 (55%) were fluid responders. Overall, the ΔScvO2 during the fluid challenge exhibited excellent performance for defining fluid responsiveness in mechanically ventilated patients receiving volume expansion, with an AUHSROC of 0.86 (95% CI 0.83-0.89), a pooled sensitivity of 0.78 (95% CI 0.69-0.85), a pooled specificity of 0.84 (95% CI 0.72-0.91), and a pooled diagnostic odds ratio of 17.7 (95% CI 5.9-53.2). The distribution of the cutoff values was nearly conically symmetrical and concentered between 3 and 5%; the mean and median cutoff values were 4% (95% CI 3-5%) and 4% (95% CI not estimable), respectively. CONCLUSIONS In mechanically ventilated patients receiving volume expansion, the ΔScvO2 during the fluid challenge is a reliable indicator of fluid responsiveness. Clinical trial registration PROSPERO, https://www.crd.york.ac.uk/prospero/ , registry number: CRD42022370192.
Collapse
Affiliation(s)
- Jianneng Pan
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Yuxiang Sun
- Department of Emergency, Ningbo Yinzhou No.2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Zhaojun Xu
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Pingping Dong
- Baihe Street Community Health Services of Yinzhou District, Ningbo, 315000, Zhejiang, China.
| | - Xiaoyang Zhou
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|