1
|
Azer SA, Hasanato R. Use of bile acids as potential markers of liver dysfunction in humans: A systematic review. Medicine (Baltimore) 2021; 100:e27464. [PMID: 34731122 PMCID: PMC8519223 DOI: 10.1097/md.0000000000027464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE This study aimed to determine the effectiveness of using total, individual serum, or urinary bile acids (BA) as potential markers of liver dysfunction. METHODS We searched the PubMed and Web of Science databases using the following keywords- "serum bile acids," "liver dysfunction," "liver injury," "liver disease," "traditional liver function tests," "Chronic liver disease," "acute liver injury". The search was complemented by manual screening of the list of references for relevant articles. We selected only English-language manuscripts for adult patients based on predetermined inclusion and exclusion criteria. Animal studies and studies on neonates and children were not included. OUTCOME MEASURES Changes in BA concentrations or ratios at or prior to changes in liver function tests. RESULTS A total of 547 studies were identified, of which 28 were included after reading the entire manuscript. These studies included 1630 patients and 836 controls published between 1990 and 2017. The methods used in BA assays varied significantly, and the studies did not agree. on specific individual BA or BA ratios as biomarkers of specific liver injury or dysfunction. Except for the prognostic value of BA in intrahepatic cholestasis of pregnancy (ICP), studies have failed to provide evidence for BA as a liver biomarker. CONCLUSIONS Despite the research conducted on BA for over 27 years, there are inconsistencies in the reported results and a lack of solid evidence to support the use of individual BA or BA ratios as biomarkers of liver injury. Adequately conducted studies needed to resolve this limitation in the literature.
Collapse
Affiliation(s)
- Samy A. Azer
- Gastroenterologist and Chair of Curriculum Development and Research Unit, Department of Medical Education, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rana Hasanato
- Clinical Biochemistry Consultant and Chair of Biochemistry Unit, Director of the Laboratories at King Saud University Medical City, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Chang HJ, Zúñiga A, Conejero I, Voyvodic PL, Gracy J, Fajardo-Ruiz E, Cohen-Gonsaud M, Cambray G, Pageaux GP, Meszaros M, Meunier L, Bonnet J. Programmable receptors enable bacterial biosensors to detect pathological biomarkers in clinical samples. Nat Commun 2021; 12:5216. [PMID: 34471137 PMCID: PMC8410942 DOI: 10.1038/s41467-021-25538-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.
Collapse
Affiliation(s)
- Hung-Ju Chang
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ana Zúñiga
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ismael Conejero
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- Neuropsychiatry: Epidemiological and Clinical Research, Inserm Unit 1061, Montpellier, France
- Department of Psychiatry, CHU Nimes, University of Montpellier, Montpellier, France
| | - Peter L Voyvodic
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jerome Gracy
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Elena Fajardo-Ruiz
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Guillaume Cambray
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Georges-Philippe Pageaux
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Magdalena Meszaros
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Lucy Meunier
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Germani G, Rodriguez-Castro K, Russo FP, Senzolo M, Zanetto A, Ferrarese A, Burra P. Markers of acute rejection and graft acceptance in liver transplantation. World J Gastroenterol 2015; 21:1061-1068. [PMID: 25632178 PMCID: PMC4306149 DOI: 10.3748/wjg.v21.i4.1061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
The evaluation of the immunosuppression state in liver transplanted patients is crucial for a correct post-transplant management and a major step towards the personalisation of the immunosuppressive therapy. However, current immunological monitoring after liver transplantation relies mainly on clinical judgment and on immunosuppressive drug levels, without a proper assessment of the real suppression of the immunological system. Various markers have been studied in an attempt to identify a specific indicator of graft rejection and graft acceptance after liver transplantation. Considering acute rejection, the most studied markers are pro-inflammatory and immunoregulatory cytokines and other proteins related to inflammation. However there is considerable overlap with other conditions, and only few of them have been validated. Standard liver tests cannot be used as markers of graft rejection due to their low sensitivity and specificity and the weak correlation with the severity of histopathological findings. Several studies have been performed to identify biomarkers of tolerance in liver transplanted patients. Most of them are based on the analysis of peripheral blood samples and on the use of transcriptional profiling techniques. Amongst these, NK cell-related molecules seem to be the most valid marker of graft acceptance, whereas the role CD4+CD25+Foxp3+ T cells has still to be properly defined.
Collapse
|
4
|
Gruenbaum BF, Boyko M, Delgado B, Douvdevany A, Gruenbaum SE, Melamed I, Gideon M, Cesnulis E, Shapira Y, Zlotnik A. Cell-free DNA as a potential marker to predict carbon tetrachloride-induced acute liver injury in rats. Hepatol Int 2012. [PMID: 26201806 DOI: 10.1007/s12072-012-9414-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Finding an optimal biomarker for the noninvasive evaluation of acute liver injury (ALI) may be of great value in predicting clinical outcomes and investigating potential treatments. We investigated cell-free DNA (CFD) as a potential biomarker to predict carbon tetrachloride-induced ALI in rats. METHODS Forty-five Sprague-Dawley rats were randomly assigned to three groups. ALI was induced by carbon tetrachloride via a nasogastric tube at 1, 2.5, or 5 ml/kg of a 50 % solution. Fifteen additional rats underwent a sham procedure. Blood samples were drawn at time t which was 0 (baseline), 3, 6, 12, 24, 48, 72, 96, and 120 h for the measurements of CFD, glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), and total bilirubin. Prothrombin time and histology were examined at 24 and 120 h following injection of 5 ml/kg carbon tetrachloride in 18 additional rats and in 10 control rats. RESULTS CFD levels in rats subjected to carbon tetrachloride-induced ALI were significantly increased in all blood samples starting at 12 h after the induction of ALI (p < 0.001), reaching peak levels at 24 h. Blood GOT, GPT, and total bilirubin were elevated in all blood samples starting at 3 h after the induction of ALI (p < 0.0001), reaching peak levels by 48 h. A positive correlation was demonstrated between CFD levels and GOT (R (2) = 0.92), GPT (R (2) = 0.92), and total bilirubin (R (2) = 0.76). CFD levels correlated with liver damage seen on histological examination, as well as predicted liver damage, at 24 h after ALI. CONCLUSIONS CFD may be a useful biomarker for the prediction and measurement of ALI. There is no evidence to suggest that CFD is superior to other available noninvasive biomarkers.
Collapse
Affiliation(s)
- Benjamin Fredrick Gruenbaum
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Beer Sheva, 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Beer Sheva, 84105, Israel
| | - Bertha Delgado
- Department of Pathology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amos Douvdevany
- Department of Clinical Biochemistry, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shaun Evan Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Israel Melamed
- Department of Neurosurgery, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Micky Gideon
- Department of Neurosurgery, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Evaldas Cesnulis
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Yoram Shapira
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Beer Sheva, 84105, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Beer Sheva, 84105, Israel.
| |
Collapse
|