1
|
King EM, Wilson JM, Hostnik ET, Bapodra P, Junge RE, Niehaus AJ, Durgam SS, Schreeg ME. Chronic osteoarthritis caused by Propionibacterium australiense infection in a captive sand gazelle. J Vet Diagn Invest 2024; 36:816-822. [PMID: 39101552 PMCID: PMC11529068 DOI: 10.1177/10406387241263329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Osteoarthritis is a common cause of morbidity and mortality in geriatric gazelles. Propionibacterium australiense has been reported as a cause of systemic granulomas in cattle, but there are no descriptions of this bacteria infecting other species nor causing osteoarthritis, to our knowledge. An 8-y-old, castrated male, sand gazelle (Gazella leptoceros leptoceros) was managed for chronic, intermittent, progressive osteoarthritis of the right tarsus. Serial biopsies revealed pyogranulomatous dermatitis with intralesional bacteria. Serial diagnostic imaging identified osseous and soft tissue proliferation with draining tracts. Treatments over 1 y included broad-spectrum antibiotics, anti-inflammatories, joint debridement, and infusion with platelet-rich plasma and stem cells. Despite therapy, lameness persisted, azotemia developed, and subsequently, the animal was euthanized. On postmortem examination, the periarticular tissue of the right tarsus was markedly expanded by pyogranulomas and fibrosis. Histologically, the synovium, joint capsule, and overlying soft tissues were markedly expanded by pyogranulomas and numerous gram-positive and acid-fast-negative filamentous bacteria surrounded by Splendore-Hoeppli material. Within the joint, there was regionally extensive cartilage ulceration, osteonecrosis, osteolysis, and pannus formation. PCR assay of affected formalin-fixed, paraffin-embedded tissue amplified segments of 16S rRNA and β subunit of bacterial RNA polymerase (rpoB) genes with 99.7% and 95.6% identity to P. australiense. This bacterium should be considered a differential for chronic pyogranulomatous osteoarthritis in gazelles.
Collapse
Affiliation(s)
- Emily M. King
- Departments of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - James M. Wilson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Eric T. Hostnik
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Andrew J. Niehaus
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sushmitha S. Durgam
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Megan E. Schreeg
- Departments of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
3
|
Tabet CG, Pacheco RL, Martimbianco ALC, Riera R, Hernandez AJ, Bueno DF, Fernandes TL. Advanced therapy with mesenchymal stromal cells for knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. J Orthop Translat 2024; 48:176-189. [PMID: 39360004 PMCID: PMC11445595 DOI: 10.1016/j.jot.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Advanced cell therapies emerged as promising candidates for treatment of knee articular diseases, but robust evidence regarding their clinical applicability is still lacking. Objective To assess the efficacy and safety of advanced mesenchymal stromal cells (MSC) therapy for knee osteoarthritis (OA) and chondral lesions. Methods Systematic review of randomized controlled trials conducted in accordance with Cochrane Handbook and reported following PRISMA checklist. GRADE approach was used for assessing the evidence certainty. Results 25 randomized controlled trials that enrolled 1048 participants were included. Meta-analyses data showed that, compared to viscosupplementation (VS), advanced MSC therapy resulted in a 1.91 lower pain VAS score (95 % CI -3.23 to -0.59; p < 0.00001) for the treatment of knee OA after 12 months. Compared to placebo, the difference was 0.99 lower pain VAS points (95 % CI -1.94 to -0.03; p = 0.76). According to the GRADE approach, the evidence was very uncertain for both comparisons. By excluding studies with high risk of bias, there was a similar size of effect (VAS MD -1.54, 95 % CI -2.09 to -0.98; p = 0.70) with improved (moderate) certainty of evidence, suggesting that MSC therapy probably reduces pain slightly better than VS. Regarding serious adverse events, there was no difference from advanced MSC therapy to placebo or to VS, with very uncertain evidence. Conclusion Advanced MSC therapy resulted in lower pain compared to placebo or VS for the treatment of knee OA after 12 months, with no difference in adverse events. However, the evidence was considered uncertain. The Translational Potential of this Article Currently, there is a lack of studies with good methodological structure aiming to evaluate the real clinical impact of advanced cell therapy for knee OA. The present study was well structured and conducted, with Risk of Bias, GRADE certainty assessment and sensitivity analysis. It explores the translational aspect of the benefits and safety of MSC compared with placebo and gold-standard therapy to give practitioners and researchers support to expand this therapy in their practice. PROSPERO registration number CRD42020158173. Access at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=158173.
Collapse
Affiliation(s)
- Caio Gomes Tabet
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rafael Leite Pacheco
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Ana Luiza Cabrera Martimbianco
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
- Postgraduate Program of Health and Environment, Universidade Metropolitana de Santos, Santos, Brazil
| | - Rachel Riera
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Arnaldo José Hernandez
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Tiago Lazzaretti Fernandes
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
4
|
Chen CF, Chen YC, Fu YS, Tsai SW, Wu PK, Chen CM, Chen WM, Wu HTH, Lee CH, Chang CL, Lin PC, Kao YC, Chen CH, Chuang MH. Safety and Tolerability of Intra-Articular Injection of Adipose-Derived Mesenchymal Stem Cells GXCPC1 in 11 Subjects With Knee Osteoarthritis: A Nonrandomized Pilot Study Without a Control Arm. Cell Transplant 2024; 33:9636897231221882. [PMID: 38205679 PMCID: PMC10785714 DOI: 10.1177/09636897231221882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The current study aimed to determine the safety profile of intra-articular-injected allogeneic adipose-derived mesenchymal stem cells (ADSCs) GXCPC1 in subjects with knee osteoarthritis (OA) and its preliminary efficacy outcome. The 3 + 3 phase I study was designed with two dose-escalation cohorts: low dose (6.7 × 106 GXCPC1, N = 5) and high dose (4 × 107 GXCPC1, N = 6). The primary endpoint was safety, which was evaluated by recording adverse events throughout the trial; the secondary endpoints included total, pain, stiffness, and function subscales of the Western Ontario and McMaster Universities Arthritis Index (WOMAC), Visual Analogue Scale (VAS) for pain, and 12-Item Short Form (SF-12) health survey questionnaire. The GXCPC1 treatment was found to be safe after 1 year of follow-up with no treatment-related severe adverse events observed. When compared to baseline, subjects in both the low- and high-dose cohorts demonstrated improving trends in pain and knee function after receiving GXCPC1 treatment. Generally, the net change in pain (95% confidence interval (CI) = -7.773 to -2.561t at 12 weeks compared to baseline) and knee function (95% CI = -24.297 to -10.036t at 12 weeks compared to baseline) was better in subjects receiving high-dose GXCPC1. Although this study included a limited number of subjects without a placebo arm, it showed that the intra-articular injection of ADSCs was safe and well-tolerated in subjects with therapeutic alternatives to treat knee OA. However, a larger scale study with an appropriate control would be necessary for clinical efficacy in the following study.
Collapse
Affiliation(s)
- Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shang-Wen Tsai
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Po-Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chao-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hung-Ta Hondar Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Radiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Hsin Lee
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chao-Liang Chang
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Yong-Cheng Kao
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chun-Hung Chen
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Ming-Hsi Chuang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Management, Chung Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
5
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Li J, Wu G, Xu C, Cai Z, Ji J, Yu Z, Zhang J, Wang J. Slit Guidance Ligand 3 (SLIT3) Loaded in Hydrogel Microparticles Enhances the Tendon-Bone Healing through Promotion of Type-H Vessel Formation: An Experimental Study in Mice. Int J Mol Sci 2023; 24:13638. [PMID: 37686444 PMCID: PMC10488208 DOI: 10.3390/ijms241713638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Poor tendon-bone interface (TBI) integration is one of the major causes contributing to unsatisfactory healing quality in patients after anterior cruciate ligament (ACL) reconstruction. Type H vessels have been recently found to closely modulate bone formation via regulation of the osteo-angiogenic crosstalk, so the strategies favoring type H vessel formation may be promising therapeutic approaches for improved graft osteointegration. In this study, we reported for the first time the treatment outcome of slit guidance ligand 3 (slit3), a novel proangiogenic factor favoring type H vessel formation, in TBI healing in mice with ACL reconstruction. The mice (n = 87) were divided into three groups for various treatments: hydrogel microparticles (HMP, control group), slit3@HMP, and slit3 neutralizing antibody@HMP (slit3-AB@HMP). Histological analysis, gait performance, radiographic measurement, and biomechanical testing were performed to assess the TBI healing quality. Increased bony ingrowth and reduced fibrous scar tissue was formed at the TBI in the slit3@HMP group when compared to the HMP group. Meanwhile, the slit3-AB@HMP inhibited the osseous ingrowth and increased fibrous scar tissue formation relative to the HMP group. Compared to the HMP group, the slit3@HMP favored type H vessel formation at the TBI while the slit3-AB@HMP impeded it. According to micro-CT assessment, compared to the HMP group, the slit3@HMP significantly increased the peri-tunnel bone mass while the slit3-AB@HMP significantly reduced the peri-tunnel bone mass. The mice in the slit3@HMP group showed the best gait performance in terms of stance time, stride length, paw print area, and stance pressure. Dynamic laxity measurement and tensile testing showed the slit3@HMP group exhibited significantly reduced laxity displacement and improved failure load and stiffness relative to the other two groups. Collectively, the injection of slit3 could be used to enhance tendon-bone integration, which may be ascribed to modulation of angiogenesis-osteogenesis crosstalk coupled by type H vessels.
Collapse
Affiliation(s)
- Jianting Li
- School of Biomedical Engineering, Sun Yat-sen University Shenzhen Campus, Shenzhen 518107, China; (J.L.)
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Changhao Xu
- School of Biomedical Engineering, Sun Yat-sen University Shenzhen Campus, Shenzhen 518107, China; (J.L.)
| | - Zhining Cai
- School of Biomedical Engineering, Sun Yat-sen University Shenzhen Campus, Shenzhen 518107, China; (J.L.)
| | - Jiali Ji
- School of Biomedical Engineering, Sun Yat-sen University Shenzhen Campus, Shenzhen 518107, China; (J.L.)
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University Shenzhen Campus, Shenzhen 518107, China; (J.L.)
| |
Collapse
|
7
|
Kim YS, Oh SM, Suh DS, Tak DH, Kwon YB, Koh YG. Arthroscopic Implantation of Adipose-Derived Stromal Vascular Fraction Improves Cartilage Regeneration and Pain Relief in Patients With Knee Osteoarthritis. Arthrosc Sports Med Rehabil 2023; 5:e707-e716. [PMID: 37388866 PMCID: PMC10300599 DOI: 10.1016/j.asmr.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose To compare the pain relief and cartilage repair status of patients with knee osteoarthritis who received arthroscopic treatment with or without stromal vascular fraction (SVF) implantation. Methods We retrospectively evaluated the patients who were examined with 12-month follow-up magnetic resonance imaging (MRI) after arthroscopic treatment for knee osteoarthritis from September 2019 to April 2021. Patients were included in this study if they had grade 3 or 4 knee osteoarthritis according to the Outerbridge classification in MRI. The visual analog scale (VAS) was used for pain assessment over the follow-up period (baseline and at 1-, 3-, 6-, and 12-month follow-ups). Cartilage repair was evaluated using follow-up MRIs based on Outerbridge grades and the Magnetic Resonance Observation of Cartilage Repair Tissue scoring system. Results Among 97 patients who received arthroscopic treatment, 54 patients received arthroscopic treatment alone (conventional group) and 43 received arthroscopic treatment along with SVF implantation (SVF group). In the conventional group, the mean VAS score decreased significantly at 1-month post-treatment compared with baseline (P < .05), and gradually increased from 3 to 12 months' post-treatment (all P < .05). In the SVF group, the mean VAS score decreased until 12 months post-treatment compared with baseline (all P < .05 except P = .780 in 1-month vs 3-month follow-ups). Significantly greater pain relief was reported in the SVF group than in the conventional group at 6 and 12 months' post-treatment (all P < .05). Overall, Outerbridge grades were significantly greater in the SVF group than in the conventional group (P < .001). Similarly, mean Magnetic Resonance Observation of Cartilage Repair Tissue scores were significantly greater (P < .001) in the SVF group (70.5 ± 11.1) than in the conventional group (39.7 ± 8.2). Conclusions The results regarding pain improvement and cartilage regeneration and the significant correlation between pain and MRI outcomes at 12-months follow-up indicate that the arthroscopic SVF implantation technique may be useful for repairing cartilage lesions in knee osteoarthritis. Level of Evidence Level III, retrospective comparative study.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Gon Koh
- Address correspondence to Yong Gon Koh, M.D., Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul 06698, Republic of Korea.
| |
Collapse
|
8
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR. Mechanisms of analgesic effect of mesenchymal stem cells in osteoarthritis pain. World J Stem Cells 2023; 15:196-208. [PMID: 37181003 PMCID: PMC10173815 DOI: 10.4252/wjsc.v15.i4.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, and it is a major cause of pain, disability and health burden. Pain is the most common and bothersome presentation of OA, but its treatment is still suboptimal, due to the short-term action of employed analgesics and their poor adverse effect profile. Due to their regenerative and anti-inflammatory properties, mesenchymal stem cells (MSCs) have been extensively investigated as a potential therapy for OA, and numerous preclinical and clinical studies found a significant improvement in joint pathology and function, pain scores and/or quality of life after administration of MSCs. Only a limited number of studies, however, addressed pain control as the primary end-point or investigated the potential mechanisms of analgesia induced by MSCs. In this paper, we review the evidence reported in literature that support the analgesic action of MSCs in OA, and we summarize the potential mechanisms of these antinociceptive effects.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
9
|
Takashima Y, Matsumoto T, Nakano N, Kamenaga T, Kuroda Y, Hayashi S, Matsushita T, Niikura T, Kuroda R. The influence of ruptured scar pattern of human anterior cruciate ligament remnant tissue on tendon-bone healing in vivo. J Orthop Res 2023; 41:500-510. [PMID: 35634871 DOI: 10.1002/jor.25387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine whether the transplantation of human cells from a non-reattached injured anterior cruciate ligament (ACL) remnant could enhance tendon-bone healing. Human ACL remnant tissue was classified into two groups based on the morphologic pattern as per Crain's classification: (1) non-reattachment group (Crain Ⅳ) and (2) reattachment group (Crain Ⅰ-Ⅲ). Seventy-five 10-week-old immunodeficient rats underwent ACL reconstruction followed by intracapsular administration of one of the following: (1) ACL-derived cells from the non-reattached remnant (non-reattachment group) (n = 5), (2) ACL-derived cells from the reattached tissue (reattachment group) (n = 5), or (3) phosphate-buffered saline (PBS) only (PBS group) (n = 5). Histological (Weeks 2, 4, and 8), immunohistochemical (Week 2), radiographic (Weeks 0, 2, 4, and 8), and biomechanical (Week 8) assessments were performed. Histological evaluation showed high and early healing, induction of endochondral ossification-like integration, and mature bone ingrowth at Week 4 in the non-reattachment group. Microcomputed tomography at Week 4 showed that the tibial bone tunnels in the non-reattachment group were significantly reduced compared to those in the reattachment and PBS groups. Moreover, biomechanical testing showed that ultimate load-to-failure in the non-reattachment group tended to be larger than that in the reattachment group, though not statistically significant. The enhanced healing potential in the non-reattachment group was explained by the increase in intrinsic angiogenesis/osteogenesis. In the subacute phase, the ACL-derived cells with the non-reattached morphologic pattern showed greater and earlier tendon bone healing compared with the cells obtained from the reattached morphologic pattern.
Collapse
Affiliation(s)
- Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Sun D, Liu X, Xu L, Meng Y, Kang H, Li Z. Advances in the Treatment of Partial-Thickness Cartilage Defect. Int J Nanomedicine 2022; 17:6275-6287. [PMID: 36536940 PMCID: PMC9758915 DOI: 10.2147/ijn.s382737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/23/2022] [Indexed: 04/17/2024] Open
Abstract
Partial-thickness cartilage defects (PTCDs) of the articular surface is the most common problem in cartilage degeneration, and also one of the main pathogenesis of osteoarthritis (OA). Due to the lack of a clear diagnosis, the symptoms are often more severe when full-thickness cartilage defect (FTCDs) is present. In contrast to FTCDs and osteochondral defects (OCDs), PTCDs does not injure the subchondral bone, there is no blood supply and bone marrow exudation, and the nearby microenvironment is unsuitable for stem cells adhesion, which completely loses the ability of self-repair. Some clinical studies have shown that partial-thickness cartilage defects is as harmful as full-thickness cartilage defects. Due to the poor effect of conservative treatment, the destructive surgical treatment is not suitable for the treatment of partial-thickness cartilage defects, and the current tissue engineering strategies are not effective, so it is urgent to develop novel strategies or treatment methods to repair PTCDs. In recent years, with the interdisciplinary development of bioscience, mechanics, material science and engineering, many discoveries have been made in the repair of PTCDs. This article reviews the current status and research progress in the treatment of PTCDs from the aspects of diagnosis and modeling of PTCDs, drug therapy, tissue transplantation repair technology and tissue engineering ("bottom-up").
Collapse
Affiliation(s)
- Daming Sun
- Wuhan Sports University, Wuhan, People’s Republic of China
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiangzhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Liangliang Xu
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Yi Meng
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Haifei Kang
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
11
|
Ertürk A, Demir S, Günal YD, Zengin M, Çınar M, Yıldız D, Karahan S, Şenel E. The impact of bone marrow-derived mesenchymal stem cells on experimental testiculartorsion in rats. Turk J Med Sci 2022; 52:522-523. [PMID: 36161618 DOI: 10.55730/1300-0144.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the healing effects of bone marrow-derived mesenchymal stem cells (BMMSCs) on experimental testicular torsion in rats. METHODS Three groups consisting of 10 Wistar albino rats were created. In Group I, the left testicle was explored and relocated in the scrotum without any attempt to modify it. In Group II, the left testicle underwent torsion for three h and then was detorsed and relocated. In Group III, in addition to torsion and detorsion, BM-MSCs were administered intratesticularly. The rats were sacrificed on the seventh day, and the healing status of the testicles was investigated with histopathological and biochemical analyses. BM-MSC involvement was investigated by immunofluorescence microscopy. Statistical analysis was performed using SPSS 15.0. A p-value < 0.05 was considered statistically significant for all variables. RESULTS Immunofluorescence microscopy showed that BM-MSCs were located around the Leydig cells in Group III. Under light microscopy, the mean Johnsen Score of Group III was significantly higher than that of Group II (p = 0.035). The interleukin-10 (IL-10) level was significantly higher in Group III compared to Group II (p = 0.003). While the malondialdehyde (MDA) values in Group I (the control group) were lower than in the other groups (p = 0.037), the superoxide dismutase (SOD) values were similar (p = 0.158). Although there was no statistically significant difference between Group II and Group III in terms of MDA, it was lower in Group III. Although the tissue SOD levels were higher in Group III than in Group II, the difference was not statistically significant. DISCUSSION : This study has demonstrated that BM-MSCs significantly corrected the Johnsen Score and increased anti-inflammatory cytokine levels after testicular torsion. BM-MSCs can be used in testicular torsion as supportive therapy to minimize tissue damage.
Collapse
Affiliation(s)
- Ahmet Ertürk
- Department of Pediatric Surgery, Ankara City Hospital, Ankara, Turkey; Department of Pediatric Surgery, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Sabri Demir
- Department of Pediatric Surgery, Ankara City Hospital, Ankara, Turkey; Department of Pediatric Surgery, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Yasemin Dere Günal
- Department of Pediatric Surgery, Ankara City Hospital, Ankara, Turkey; Department of Pediatric Surgery, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mehmet Zengin
- Department of Pathology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Miyase Çınar
- Department of Biochemistry, Faculty of Veterinary, Kırıkkale University, Turkey
| | - Dinçer Yıldız
- Department of Anatomy, Faculty of Veterinary, Kırıkkale University, Kırıkkale, Turkey
| | - Siyami Karahan
- Department of Hystology, Faculty of Veterinary, Kırıkkale University, Kırıkkale, Turkey
| | - Emrah Şenel
- Department of Pediatric Surgery, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
12
|
Musahl V, Nazzal EM, Lucidi GA, Serrano R, Hughes JD, Margheritini F, Zaffagnini S, Fu FH, Karlsson J. Current trends in the anterior cruciate ligament part 1: biology and biomechanics. Knee Surg Sports Traumatol Arthrosc 2022; 30:20-33. [PMID: 34927221 DOI: 10.1007/s00167-021-06826-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022]
Abstract
A trend within the orthopedic community is rejection of the belief that "one size fits all." Freddie Fu, among others, strived to individualize the treatment of anterior cruciate ligament (ACL) injuries based on the patient's anatomy. Further, during the last two decades, greater emphasis has been placed on improving the outcomes of ACL reconstruction (ACL-R). Accordingly, anatomic tunnel placement is paramount in preventing graft impingement and restoring knee kinematics. Additionally, identification and management of concomitant knee injuries help to re-establish knee kinematics and prevent lower outcomes and registry studies continue to determine which graft yields the best outcomes. The utilization of registry studies has provided several large-scale epidemiologic studies that have bolstered outcomes data, such as avoiding allografts in pediatric populations and incorporating extra-articular stabilizing procedures in younger athletes to prevent re-rupture. In describing the anatomic and biomechanical understanding of the ACL and the resulting improvements in terms of surgical reconstruction, the purpose of this article is to illustrate how basic science advancements have directly led to improvements in clinical outcomes for ACL-injured patients.Level of evidenceV.
Collapse
Affiliation(s)
- Volker Musahl
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA
| | - Ehab M Nazzal
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA.
| | - Gian Andrea Lucidi
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA.,IIa Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rafael Serrano
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA
| | - Jonathan D Hughes
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA
| | | | - Stefano Zaffagnini
- IIa Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Freddie H Fu
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3471 Fifth Ave, Suite 1010, Pittsburgh, PA, USA
| | - Jon Karlsson
- The Department of Orthopaedics, Institute of Clinical Sciences at Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
13
|
Onoi Y, Hiranaka T, Hida Y, Fujishiro T, Okamoto K, Matsumoto T, Kuroda R. Second-look Arthroscopic Findings and Clinical Outcomes after Adipose-derived Regenerative Cell Injection in Knee Osteoarthritis. Clin Orthop Surg 2022; 14:377-385. [PMID: 36061847 PMCID: PMC9393284 DOI: 10.4055/cios20312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/18/2021] [Accepted: 07/11/2021] [Indexed: 12/03/2022] Open
Abstract
Background To evaluate the clinical outcomes and second-look arthroscopic findings after intra-articular adipose-derived regenerative cell (ADRC) injection as treatment for knee osteoarthritis (OA). Methods ADRCs were administered to 11 patients (19 knees; mean age, 61.7 years) with knee OA. Subcutaneous adipose tissue was harvested by liposuction from both thighs, and arthroscopic lavage was performed, followed by ADRC injection (mean dose, 1.40 × 107 cells) into the synovial fluid. Outcome measures included the Knee Injury and Osteoarthritis Outcome Score, Lysholm score, and visual analog scale score. Arthroscopic examinations were performed to assess the International Cartilage Repair Society cartilage injury grade preoperatively and overall repair postoperatively. Noninvasive assessments were performed at baseline and at 1-, 3-, and 6-month follow-ups; arthroscopic assessments were performed at baseline and at 6 months. Results All outcome measures significantly improved after treatment. This improvement was evident 1 month after treatment and was sustained until the 6-month follow-up. Data from second-look arthroscopy showed better repair in low-grade cartilage lesions than in lesions with a greater degree of damage. No patients demonstrated worsening of Kellgren-Lawrence grade, and none underwent total knee arthroplasty during this period. Conclusions Clinical outcomes were improved in patients with knee OA after ADRC administration. Cartilage regeneration was more effective in smaller damaged lesions than in bigger lesions.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takafumi Hiranaka
- Department of Orthopedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Yuichi Hida
- Department of Orthopedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Takaaki Fujishiro
- Department of Orthopedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Koji Okamoto
- Department of Orthopedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Kim KI, Lee WS, Kim JH, Bae JK, Jin W. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:586-596. [PMID: 35567774 PMCID: PMC9216498 DOI: 10.1093/stcltm/szac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/15/2022] Open
Abstract
Although successful short-term results of the intra-articular injection of mesenchymal stem cells (MSCs) for the conservative treatment of knee osteoarthritis (OA) have been reported, the mid-term results of the injection of adipose-derived (AD) MSCs remains unknown. We assessed the mid-term safety and efficacy of the intra-articular injection of ADMSCs in patients with knee OA. Eleven patients with knee OA were prospectively enrolled and underwent serial evaluations during a 5-year follow-up of a single intra-articular injection of autologous high-dose (1.0 × 108) ADMSCs. The safety profiles were assessed using the World Health Organization Common Toxicity Criteria. The clinical evaluations included visual analog scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores for pain and function, respectively. The radiologic evaluations included chondral defect area and whole-organ magnetic resonance imaging scores (WORMS) by serial magnetic resonance imaging (MRI). Hip-knee-ankle axis (HKAA) and Kellgren-Lawrence (K-L) grades were assessed on simple radiographs. No treatment-related adverse events occurred during the 5-year follow-up. Both VAS and total WOMAC scores improved significantly at 6 months after the injection and until the latest follow-up. Total WORMS was significantly improved until 3 years after the injection. However, the chondral defect size on MRI or other radiologic evaluations did not change significantly. A single intra-articular injection of autologous, high-dose ADMSCs provided safe and clinical improvement without radiologic aggravation for 5 years. Furthermore, structural changes in the osteoarthritic knee showed significant improvement up to 3 years, suggesting a possible option for disease-modifying outpatient treatment for patients with knee OA.
Collapse
Affiliation(s)
- Kang-Il Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
- Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Woo-Suk Lee
- Department of Orthopaedic Surgery, College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, South Korea
| | - Jun-Ho Kim
- Corresponding author: Jun-Ho Kim, Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea. Tel: +82-10-7170-0409;
| | - Jung-Kwon Bae
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gandong, Seoul, South Korea
| |
Collapse
|
15
|
Wu JX, Xia T, She LP, Lin S, Luo XM. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 2022; 31:9636897221083252. [PMID: 35348026 PMCID: PMC8969497 DOI: 10.1177/09636897221083252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical and mental health and hormonal imbalance are associated with the problems related to infertility and reproductive disorders. The rate of infertility has increased globally over the years, due to various reasons. Given the psychosocial implications of infertility and its effects on the life of the affected people, there has been an increased focus on its treatment over the last several years. Assisted reproductive technology can only solve about 50% of the cases. Moreover, it contains significant risks and does not solve the fundamental problem of infertility. As pluripotent stem cells have the potential to differentiate into almost any type of cell, they have been widely regarded as a promising option in the development of stem cell-based fertility treatments, which could even correct genetic diseases in offspring. These advancements in reproductive biotechnology present both challenges and possibilities for solving infertility problems caused by various unexplainable factors. This review briefly presents the different types of infertility disorders and the potential applications of stem cells in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tian Xia
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li-Ping She
- New England Fertility Institute, Stamford, CT, USA
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xiang-Min Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Bahrehbar K, Khanjarpoor Malakhond M, Gholami S. Tracking of human embryonic stem cell-derived mesenchymal stem cells in premature ovarian failure model mice. Biochem Biophys Res Commun 2021; 577:6-11. [PMID: 34487961 DOI: 10.1016/j.bbrc.2021.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/09/2022]
Abstract
Premature ovarian failure (POF) is defined by amenorrhea, hypoestrogenism, elevated gonadotropin levels, and infertility. Chemotherapeutic agents are the most gonadotoxic agents that lead to POF. Although some previous studies have presented that mesenchymal stem cells (MSCs) transplantation could rescue the ovary function of POF animal models through the paracrine pathway, these mechanisms require further investigation. However, mechanisms of embryonic stem cell-derived MSCs (ES-MSCs) therapeutic effects on POF animal models have not been fully investigated yet. This study aimed to evaluate the migration and distribution of ES-MSCs in a model of chemotherapy-induced POF. Female mice received intraperitoneal injections of cyclophosphamide (Cy) to induce POF. Then, MSCs were labeled with green fluorescent protein (GFP) in vitro and injected intravenously into POF mice, and the distribution of MSCs was dynamically monitored at 1 week after transplantation. We harvested the lungs, liver, spleen, ovaries, heart, and kidneys 1 week after transplantation. The sections of these tissues were observed under the fluorescent microscope. More than 70% MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including lungs, liver, spleen, ovaries, heart, and kidneys of POF mice. In mice, at 1week after intravenous transplantation, GFP labeled ES-MSCs were observed in the lungs, liver, spleen, ovaries, heart, and kidneys of POF mice, and the number of GFP labeled ES-MSCs in lungs, ovaries, and heart were higher than that in the spleen, kidneys, and liver. Our results revealed intravenously implanted ES-MSCs could migrate into the various tissues in chemotherapy-induced damaged POF mice.
Collapse
Affiliation(s)
- Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Sedigheh Gholami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
18
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
19
|
Esdaille CJ, Ude CC, Laurencin CT. Regenerative Engineering Animal Models for Knee Osteoarthritis. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:284-297. [PMID: 35958163 PMCID: PMC9365239 DOI: 10.1007/s40883-021-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Osteoarthritis (OA) of the knee is the most common synovial joint disorder worldwide, with a growing incidence due to increasing rates of obesity and an aging population. A significant amount of research is currently being conducted to further our understanding of the pathophysiology of knee osteoarthritis to design less invasive and more effective treatment options once conservative management has failed. Regenerative engineering techniques have shown promising preclinical results in treating OA due to their innovative approaches and have emerged as a popular area of study. To investigate these therapeutics, animal models of OA have been used in preclinical trials. There are various mechanisms by which OA can be induced in the knee/stifle of animals that are classified by the etiology of the OA that they are designed to recapitulate. Thus, it is essential to utilize the correct animal model in studies that are investigating regenerative engineering techniques for proper translation of efficacy into clinical trials. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering trials and the corresponding classification system.
Lay Summary
Osteoarthritis (OA) of the knee is the most common synovial joint disease worldwide, with high rates of occurrence due to an increase in obesity and an aging population. A great deal of research is currently underway to further our understanding of the causes of osteoarthritis, to design more effective treatments. The emergence of regenerative engineering has provided physicians and investigators with unique opportunities to join ideas in tackling human diseases such as OA. Once the concept is proven to work, the initial procedure for the evaluation of a treatment solution begins with an animal model. Thus, it is essential to utilize a suitable animal model that reflects the particular ailment in regenerative engineering studies for proper translation to human patients as each model has associated advantages and disadvantages. There are various ways by which OA can occur in the knee joint, which are classified according to the particular cause of the OA. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering investigations and the corresponding classification system.
Collapse
|
20
|
Muench LN, Berthold DP, Kia C, Otto A, Cote MP, McCarthy MB, Mazzocca AD, Mehl J. Nucleated Cell Count Has Negligible Predictive Value for the Number of Colony-Forming Units for Connective Tissue Progenitor Cells (Stem Cells) in Bone Marrow Aspirate Harvested From the Proximal Humerus During Arthroscopic Rotator Cuff Repair. Arthroscopy 2021; 37:2043-2052. [PMID: 33581306 DOI: 10.1016/j.arthro.2021.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate whether nucleated cell count (NCC) could serve as an approximation for the number of colony-forming units (CFUs) in concentrated bone marrow aspirate (cBMA) obtained from the proximal humerus. METHODS Bone marrow aspirate (BMA) was harvested from the proximal humerus in 96 patients (mean age 56.2 ± 7.0 years) during arthroscopic rotator cuff repair. Following concentration of the aspirate, nucleated cells of each sample were counted. The total number of CFUs was evaluated under the microscope at their first appearance, usually after 5 to 10 days in culture. Fluorescence-activated cell sorting analysis and assays for osteogenic, adipogenic, and chondrogenic differentiation were performed. Linear regression was assessed to predict the number of CFUs by using NCC. Age, sex, and body mass index (BMI) were evaluated as independent variables. RESULTS The average volume of the obtained BMA was 86.7 ± 35.2 mL. The cBMA contained a mean of 26.3 ± 6.8 × 106 nucleated cells per mL, which yielded a mean of 1421.7 ± 802.7 CFUs in cell culture. There were no significant differences in NCC or number of CFUs when sex, volume of BMA, age, or BMI was examined independently (P >.05, respectively). Linear regression found that NCC was of limited predictive value for the total number of CFUs being yielded after cell culture (r2 = 0.28 with a root mean square error of 679.4). CONCLUSION NCC was of negligible predictive value for the total number of CFUs for connective tissue progenitor cells in BMA harvested from the proximal humerus during arthroscopic rotator cuff repair. CLINICAL RELEVANCE NCC is often used to assess the quality of cBMA samples for biological augmentation during surgery. The limited predictive value of this measurement tool is of clinical importance, because effectiveness of BMA applications has been suggested to depend on the concentration of progenitor cells within the sample.
Collapse
Affiliation(s)
- Lukas N Muench
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.; Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany.
| | - Daniel P Berthold
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.; Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany
| | - Cameron Kia
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Alexander Otto
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.; Department of Trauma, Orthopaedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Mark P Cote
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Mary Beth McCarthy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Julian Mehl
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.; Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany
| |
Collapse
|
21
|
Ueki H, Katagiri H, Tsuji K, Miyatake K, Watanabe T, Sekiya I, Muneta T, Koga H. Effect of transplanted mesenchymal stem cell number on the prevention of cartilage degeneration and pain reduction in a posttraumatic osteoarthritis rat model. J Orthop Sci 2021; 26:690-697. [PMID: 32859470 DOI: 10.1016/j.jos.2020.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) transplantation therapy is considered an alternative therapy to prevent posttraumatic osteoarthritis (PTOA). However, consensus as to the sufficient number of MSCs for the prevention of PTOA is lacking. The purpose of this study was to determine the sufficient number of MSCs to achieve PTOA prevention and the reduction in pain after anterior cruciate ligament transection (ACLT). METHODS Eight-week-old male Wistar rats were used. ACLT was conducted in the knee joint as a PTOA model. According to the species-specific knee joint volume, 104 MSCs in rats are equivalent to 3 × 107 MSCs in humans, which was clinically prepared. MSCs (104, 105, or 106 cells) or phosphate-buffered saline were injected into the knee joint at 1, 2, and 3 weeks after ACLT. Histological examinations were performed at 12 weeks after ACLT. The weight-bearing distribution improvement ratio was calculated as an assessment of pain until 12 weeks after ACLT. RESULTS Histological evaluations showed that all the MSCs groups except for 104 MSCs group in femur were significantly improved compared to the control group at 12 weeks after ACLT. The weight-bearing distribution in the 104 and 105 MSCs groups at 12 weeks after ACLT and in the 106 MSCs group at 6, 8, 10, and 12 weeks after ACLT were significantly higher than those of the control group. CONCLUSION A clinically feasible number of MSCs was found to reduce the articular cartilage degeneration and to decrease pain in the PTOA model. Increasing numbers of the cells further protected the articular cartilage against degeneration.
Collapse
Affiliation(s)
- Hiroko Ueki
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan; Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Kunikazu Tsuji
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan; Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshifumi Watanabe
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takeshi Muneta
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan; Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
22
|
Jeong HJ, Lee SW, Hong MW, Kim YY, Seo KD, Cho YS, Lee SJ. Total Meniscus Reconstruction Using a Polymeric Hybrid-Scaffold: Combined with 3D-Printed Biomimetic Framework and Micro-Particle. Polymers (Basel) 2021; 13:polym13121910. [PMID: 34201327 PMCID: PMC8229034 DOI: 10.3390/polym13121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
| | - Se-Won Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Myoung Wha Hong
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Young Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Young-Sam Cho
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Seung-Jae Lee
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| |
Collapse
|
23
|
D'Atri D, Zerrillo L, Garcia J, Oieni J, Lupu-Haber Y, Schomann T, Chan A, Cruz LJ, Creemers LB, Machluf M. Nanoghosts: Mesenchymal Stem cells derived nanoparticles as a unique approach for cartilage regeneration. J Control Release 2021; 337:472-481. [PMID: 34015401 DOI: 10.1016/j.jconrel.2021.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease, which affects the joints and is characterized by inflammation, cartilage loss and bone changes. Nowadays, there are no treatments for OA, and current therapies are focused on relieving the symptoms. As a new therapy approach, micro and nanoparticles have been extensively explored and among all the studied particles, the use of cell-membrane-based particles is expanding. Another promising approach studied to treat OA, is the use of mesenchymal stem cells (MSCs) which play an important role modulating inflammation. We developed a novel kind of MSCs' cytoplasmic-membrane-based nanoparticles, termed nano-ghosts (NGs). Retaining MSCs' surface properties and lacking cells' internal machinery allow the NGs to have immunomodulatory capacity and to be immune-evasive while not susceptible to host-induced changes. In this study, we demonstrate NGs' ability to target cartilage tissues, in vitro and in vivo, while modulating the inflammatory process. In vivo studies demonstrated NGs ability to act as an immunomodulatory drug slowing down cartilage degeneration process. Our proof-of-concept experiments show that NGs system is a versatile nano-carrier system, capable of therapeutics loading, with targeting capabilities towards healthy and inflamed cartilage cells. Our results, along with previously published data, clearly reveal the NGs system as a promising nano-carrier platform and as a potential immunomodulatory drug for several inflammation-related diseases.
Collapse
Affiliation(s)
- D D'Atri
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa, Israel
| | - L Zerrillo
- Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - J Garcia
- Department of Orthopaedics, University Medical Center, 3584, CX, Utrecht, the Netherlands
| | - J Oieni
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa, Israel
| | - Y Lupu-Haber
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa, Israel
| | - T Schomann
- Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - A Chan
- Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - L J Cruz
- Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - L B Creemers
- Department of Orthopaedics, University Medical Center, 3584, CX, Utrecht, the Netherlands
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
24
|
Demir S, Erturk A, Gunal YD, Ozmen I, Zengin M, Yildiz D, Karaoz E, Karahan S, Senel E. Contribution of Bone Marrow-Derived Mesenchymal Stem Cells to Healing of Pulmonary Contusion-Created Rats. J Surg Res 2021; 261:205-214. [PMID: 33450629 DOI: 10.1016/j.jss.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND The most common thoracic injury in children, resulting in trauma, is pulmonary contusion (PC). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are used in wound healing and many other diseases. This study aims to examine the effects of BM-MSCs on PC healing in rats. MATERIALS AND METHODS A total of 45 male Wistar albino rats were used. Four groups were formed. BM-MSCs were labeled with the green fluorescent protein. PC was observed in the control group. In group II, PC occured and left to spontaneous healing. In group III, PC formed and BM-MSCs were given. In group IV, BM-MSCs were given without PC formation. Subjects were sacrificed 1 week later. Whether there was any difference in terms of BM-MSC involvement and lung injury score was investigated. Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS), version 17.0, software (SPSS Inc., Chicago, IL), and p value of <0.05 was considered statistically significant. RESULTS BM-MSCs were collected much more in the lungs in group III than in group IV. Group III had a lower lung injury score value than group II. CONCLUSION The greater involvement of the BM-MSCs in the injury site, and further reductions in lung injury score suggest that BM-MSCs are contributing to the healing of the injury. The use of BM-MSCs in risky patients with diffuse PC may be an alternative treatment to conventional methods.
Collapse
Affiliation(s)
- Sabri Demir
- Department of Pediatric Surgery, Ankara Bilkent City Hospital, Children Hospital, Ankara, Turkey; Department of Pediatric Surgery, School of Medicine, Kirikkale University, Kirikkale, Turkey.
| | - Ahmet Erturk
- Department of Pediatric Surgery, Ankara Bilkent City Hospital, Children Hospital, Ankara, Turkey; Department of Pediatric Surgery, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Yasemin Dere Gunal
- Department of Pediatric Surgery, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ismail Ozmen
- Department of Pediatric Surgery, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Mehmet Zengin
- Department of Pathology, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Dincer Yildiz
- Faculty of Veterinary, Department of Anatomy, Kirikkale University, Kirikkale, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, School of Medicine, Istinye University, İstanbul, Turkey
| | - Siyami Karahan
- Faculty of Veterinary, Department of Histology, Kirikkale University, Kirikkale, Turkey
| | - Emrah Senel
- Department of Pediatric Surgery, School of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
25
|
Effect of Muscle Cell Preservation on Viability and Differentiation of Hamstring Tendon Graft In Vitro. Cells 2021; 10:cells10040740. [PMID: 33801626 PMCID: PMC8065441 DOI: 10.3390/cells10040740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Muscle tissue is often removed during hamstring tendon graft preparation for anterior cruciate ligament (ACL) reconstruction. The purpose of the study was to test whether preservation of muscle remnants on a tendon graft is beneficial to the graft healing process following ACL reconstruction. Co-culturing of tendon-derived cells (TDCs) and muscle-derived cells (MDCs) was performed at various ratios, and their potential for cell viability and multilineage differentiation was compared to a single TDC cell group. Ligamentous and chondrogenic differentiation was most enhanced when a small population of MDCs was co-cultured with TDCs (6:2 co-culture group). Cell viability and osteogenic differentiation were proportionally enhanced with increasing MDC population size. MDCs co-cultured with TDCs possess both the ability to enhance cell viability and differentiate into other cell lineages.
Collapse
|
26
|
Zhang Q, Xiang E, Rao W, Zhang YQ, Xiao CH, Li CY, Han B, Wu D. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone Joint Res 2021; 10:226-236. [PMID: 33739851 PMCID: PMC7998343 DOI: 10.1302/2046-3758.103.bjr-2020-0206.r2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA). Methods Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry. Results Histopathological analysis showed that intra-articular injection of human UC-MSCs significantly inhibited the progression of OA, as demonstrated by reduced cartilage degradation, increased Safranin-O staining, and lower Mankin scores. Immunohistochemistry showed that human UC-MSC treatment down-regulated the expression of matrix metalloproteinase-13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and enhanced the expression of type II collagen and ki67 in the articular cartilage. Furthermore, human UC-MSCs significantly decreased the expression of interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), while increasing TNF-α-induced protein 6 and IL-1 receptor antagonist. Conclusion Our results demonstrated that human UC-MSCs ameliorate MIA-induced OA by preventing cartilage degradation, restoring the proliferation of chondrocytes, and inhibiting the inflammatory response, which implies that human UC-MSCs may be a promising strategy for the treatment of OA. Cite this article: Bone Joint Res 2021;10(3):226–236.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - E Xiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Ya Qi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | | | - Chang Yong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Bing Han
- Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| |
Collapse
|
27
|
Kawakami Y, Nonaka K, Fukase N, Amore AD, Murata Y, Quinn P, Luketich S, Takayama K, Patel KG, Matsumoto T, Cummins JH, Kurosaka M, Kuroda R, Wagner WR, Fu FH, Huard J. A Cell-free Biodegradable Synthetic Artificial Ligament for the Reconstruction of Anterior Cruciate Ligament in a Rat Model. Acta Biomater 2021; 121:275-287. [PMID: 33129986 DOI: 10.1016/j.actbio.2020.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Traditional Anterior Cruciate Ligament (ACL) reconstruction is commonly performed using an allograft or autograft and possesses limitations such as donor site morbidity, decreased range of motion, and potential infection. However, a biodegradable synthetic graft could greatly assist in the prevention of such restrictions after ACL reconstruction. In this study, artificial grafts were generated using "wet" and "dry" electrospinning processes with a biodegradable elastomer, poly (ester urethane) urea (PEUU), and were evaluated in vitro and in vivo in a rat model. Four groups were established: (1) Wet PEUU artificial ligament, (2) Dry PEUU artificial ligament, (3) Dry polycaprolactone artificial ligament (PCL), and (4) autologous flexor digitorum longus tendon graft. Eight weeks after surgery, the in vivo tensile strength of wet PEUU ligaments had significantly increased compared to the other synthetic ligaments. These results aligned with increased infiltration of host cells and decreased inflammation within the wet PEUU grafts. In contrast, very little cellular infiltration was observed in PCL and dry PEUU grafts. Micro-computed tomography analysis performed at 4 and 8 weeks postoperatively revealed significantly smaller bone tunnels in the tendon autograft and wet PEUU groups. The Wet PEUU grafts served as an adequate functioning material and allowed for the creation of tissues that closely resembled the ACL.
Collapse
Affiliation(s)
- Yohei Kawakami
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kazuhiro Nonaka
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Naomasa Fukase
- Steadman Philippon Research Institute, Vail CO 81657; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Antonio D' Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yoichi Murata
- Steadman Philippon Research Institute, Vail CO 81657
| | - Patrick Quinn
- Steadman Philippon Research Institute, Vail CO 81657
| | - Samuel Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kunj G Patel
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | | | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail CO 81657.
| |
Collapse
|
28
|
Olsson DC, Teixeira BL, Jeremias TDS, Réus JC, De Luca Canto G, Porporatti AL, Trentin AG. Administration of mesenchymal stem cells from adipose tissue at the hip joint of dogs with osteoarthritis: A systematic review. Res Vet Sci 2020; 135:495-503. [PMID: 33280823 DOI: 10.1016/j.rvsc.2020.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
This systematic review aimed to determine the effects of intra-articular administration of mesenchymal stem cells from adipose tissue in dogs with hip joint osteoarthritis (OA). Clinical trials were systematically reviewed, using PubMed, EMBASE, Cochrane Library, LILACS, Web of Science, Scopus, Open Grey, Google Scholar, and ProQuest Dissertation and Thesis without publication year restrictions. References were screened and selected based on predefined eligibility criteria by two independent reviewers, according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Clinical outcomes were assessed quantitatively using clinical pain scores, physical examination, imaging examination, questionnaire responses, pain in manipulation, gait analysis, range of joint motion, and adverse effects. The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist. Out of 1483 articles, six met the inclusion criteria for qualitative analysis, with two randomized controlled trials and four before-and-after studies. All studies reported significantly better clinical outcomes in the adipose tissue stem cells (ADSC) group with improvements in pain and function and decreased evidence of hip OA. The risk of bias was categorized as high in the before-and-after studies and moderate to high in the randomized studies. The studies were considered heterogeneous owing to clinical results and methodology. Because of this heterogeneity, it was not possible to perform meta-analysis. Assessments of ADSC reports yielded positive clinical effects that showed improvements in pain and function and decreased evidence of hip osteoarthritis. More high-level, larger-cohort dog studies that utilize standardized protocols are needed.
Collapse
Affiliation(s)
- Débora Cristina Olsson
- Department of Veterinary Medicine, Federal Institute Catarinense, Concórdia, SC, Brazil.
| | - Bianca Luise Teixeira
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Talita Da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jéssica Conti Réus
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Graziela De Luca Canto
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - André Luis Porporatti
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
29
|
Zhao Y, Ma J, Yi P, Wu J, Zhao F, Tu W, Liu W, Li T, Deng Y, Hao J, Wang H, Yan L. Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Res Ther 2020; 11:466. [PMID: 33148334 PMCID: PMC7641864 DOI: 10.1186/s13287-020-01972-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is an ovarian dysfunction that seriously affects a woman’s physiological health and reproduction. Mesenchymal stem cell (MSC) transplantation offers a promising treatment option for ovarian restoration in rodent POI models. However, the efficacy and mechanism of it remain unclear. Methods POI mice model was generated by cyclophosphamide and busulfan, followed with the treatment of tail-vein injection of the human umbilical cord mesenchymal stem cells (hUCMSCs). Maternal physiological changes and offspring behavior were detected. To reveal the pathogenesis and therapeutic mechanisms of POI, we first compared the metabolite profiles of healthy and POI ovarian tissues using untargeted metabolomics analyses. After stem cell therapy, we then collected the ovaries from control, POI, and hUCMSC-treated POI groups for lipid metabolomics and pseudotargeted metabolomics analysis. Results Our results revealed remarkable changes of multiple metabolites, especially lipids, in ovarian tissues after POI generation. Following the transplantation of clinical-grade hUCMSCs, POI mice exhibited significant improvements in body weight, sex hormone levels, estrous cycles, and reproductive capacity. Lipid metabolomics and pseudotargeted metabolomics analyses for the ovaries showed that the metabolite levels in the POI group, mainly lipids, glycerophospholipids, steroids, and amino acids changed significantly compared with the controls’, and most of them returned to near-healthy levels after receiving hUCMSC treatment. Meanwhile, we also observed an increase of monosaccharide levels in the ovaries from POI mice and a decrease after stem cell treatment. Conclusions hUCMSCs restore ovarian function through activating the PI3K pathway by promoting the level of free amino acids, consequently improving lipid metabolism and reducing the concentration of monosaccharides. These findings provide potential targets for the clinical diagnosis and treatment of POI.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiye Yi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wan Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Deng
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Iyer SR, Scheiber AL, Yarowsky P, Henn RF, Otsuru S, Lovering RM. Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury. Am J Sports Med 2020; 48:2277-2286. [PMID: 32543878 DOI: 10.1177/0363546520926462] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Clinical use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) has gained momentum as treatment for muscle injuries. Exosomes, or small cell-derived vesicles, could be helpful if they could deliver the same or better physiological effect without cell transplantation into the muscle. HYPOTHESIS Local delivery of exosomes derived from PRP (PRP-exos) or MSCs (MSC-exos) to injured muscles hastens recovery of contractile function. STUDY DESIGN Controlled laboratory study. METHODS In a rat model, platelets were isolated from blood, and MSCs were isolated from bone marrow and expanded in culture; exosomes from both were isolated through ultracentrifugation. The tibialis anterior muscles were injured in vivo using maximal lengthening contractions. Muscles were injected with PRP-exos or MSC-exos (immediately after injury and 5 and 10 days after injury); controls received an equal volume of saline. Histological and biochemical analysis was performed on tissues for all groups. RESULTS Injury resulted in a significant loss of maximal isometric torque (66% ± 3%) that gradually recovered over 2 weeks. Both PRP-exos and MSC-exos accelerated recovery, with similar faster recovery of contractile function over the saline-treated group at 5, 10, and 15 days after injury (P < .001). A significant increase in centrally nucleated fibers was seen with both types of exosome groups by day 15 (P < .01). Genes involved in skeletal muscle regeneration were modulated by different exosomes. Muscles treated with PRP-exos had increased expression of Myogenin gene (P < .05), whereas muscles treated with MSC-exos had reduced expression of TGF-β (P < .05) at 10 days after muscle injury. CONCLUSION Exosomes derived from PRP or MSCs can facilitate recovery after a muscle strain injury in a small-animal model likely because of factors that can modulate inflammation, fibrosis, and myogenesis. CLINICAL RELEVANCE Given their small size, low immunogenicity, and ease with which they can be obtained, exosomes could represent a novel therapy for many orthopaedic ailments.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Yarowsky
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - R Frank Henn
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Bastos R, Mathias M, Andrade R, Amaral RJFC, Schott V, Balduino A, Bastos R, Miguel Oliveira J, Reis RL, Rodeo S, Espregueira-Mendes J. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc 2020; 28:1989-1999. [PMID: 31587091 DOI: 10.1007/s00167-019-05732-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To compare the clinical and laboratory outcomes of intra-articular injections of culture-expanded bone-derived mesenchymal stem cells (MSCs) with or without platelet-rich plasma (PRP) to intra-articular corticosteroid injections for the treatment of knee osteoarthritis (OA). METHODS Forty-seven patients with radiographic and symptomatic knee OA were randomized into three groups for intra-articular injections: autologous bone marrow-derived culture-expanded MSCs (n = 16); autologous bone marrow-derived culture-expanded MSCs + PRP (n = 14); and corticosteroid (n = 17). The outcomes were assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS) and range of motion (ROM) at baseline, 1, 2, 3, 6, 9 and 12 months and intra-articular cytokines analysis at baseline, 6 and 12 months postoperatively. RESULTS The three groups showed significant improvement in most KOOS domains and global score at 1st month and all domains and global score at 12-month follow-up (p < 0.05). At the 1st month, only the MSCs group showed significant differences in KOOS symptoms domain (p = 0.003). The MSCs and MSCs + PRP groups showed the highest percentage of improvement in most KOOS domains and global score compared to the corticosteroid group. All three groups showed a significant reduction in intra-articular levels of human interleukin-10 cytokine, from baseline to 12 months (p < 0.05). CONCLUSION An intra-articular injection of bone marrow-derived culture-expanded MSCs with or without the addiction of PRP is effective in improving the function and decreasing symptoms caused by knee OA at 12-month follow-up. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Ricardo Bastos
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Dom Henrique Research Centre, Porto, Portugal.,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, England
| | - Marcelo Mathias
- Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal
| | - Ronaldo J F C Amaral
- Kearney Lab, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Tissue Engineering Research Group, Department of Anatomy, RCSI, Dublin 2, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Vinicius Schott
- Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | | | - J Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017, Guimarães, Portugal
| | - Scott Rodeo
- Sports Medicine and Shoulder Surgery, Hospital for Special Surgery, New York, NY, USA
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal. .,Dom Henrique Research Centre, Porto, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Orthopaedics Department of Minho University, Braga, Portugal.
| |
Collapse
|
33
|
Geng Y, Chen J, Alahdal M, Chang C, Duan L, Zhu W, Mou L, Xiong J, Wang M, Wang D. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab 2020; 38:277-288. [PMID: 31760502 DOI: 10.1007/s00774-019-01055-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Currently, osteoarthritis (OA) receives global increasing attention because it associates severe joint pain and serious disability. Stem cells intra-articular injection therapy showed a potential therapeutic superiority to reduce OA development and to improve treating outputs. However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. Recently, miR-140-5p was confirmed as a critical positive regulator in chondrogenesis. We hypothesized that hUC-MSCs overexpressing miR-140-5p have better therapeutic effect on osteoarthritis. MATERIALS AND METHODS To enhance stem cell chondrogenic differentiation, we have transfected human umbilical cord mesenchymal stem cells (hUC-MSCs) with miR-140-5p mimics and miR-140-5p lentivirus to overexpress miR-140-5p in a short term or a long term accordingly. Thereafter, MSCs proliferation, chondrogenic genes expression and extracellular matrix were assessed. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of SD rats as an OA model, and then intra-articular injection of hUC-MSCs or hUC-MSCs transfected with miR-140-5p lentivirus was carried to evaluate the cartilage healing effect with histological staining and OARSI scores. The localization of hUC-MSCs after intra-articular injection was further confirmed by immunohistochemical staining. RESULTS Significant induction of chondrogenic differentiation in the miR-140-5p-hUC-MSCs (140-MSCs), while its proliferation was not influenced. Interestingly, intra-articular injection of 140-MSCs significantly enhanced articular cartilage self-repairing in comparison to normal hUC-MSCs. Moreover, we noticed that intra-articular injection of high 140-MSCs numbers reinforces cells assembling on the impaired cartilage surface and subsequently differentiated into chondrocytes. CONCLUSIONS In conclusion, these results indicate therapeutic superiority of hUC-MSCs overexpressing miR-140-5p to treat OA using intra-articular injection.
Collapse
Affiliation(s)
- Yiyun Geng
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, 518035, Guangdong Province, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518035, Guangdong Province, China
| | - Jinfu Chen
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
| | - Murad Alahdal
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, 518035, Guangdong Province, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chongfei Chang
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
| | - Li Duan
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, 518035, Guangdong Province, China
| | - Weimin Zhu
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
| | - Lisha Mou
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
| | - Jianyi Xiong
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, 518035, Guangdong Province, China
| | - Manyi Wang
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China
| | - Daping Wang
- The First Affiliated Hospital to Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong Province, China.
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, 518035, Guangdong Province, China.
| |
Collapse
|
34
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|
35
|
Lee JK, Jo S, Lee YL, Park H, Song JS, Sung IH, Kim TH. Anterior cruciate ligament remnant cells have different potentials for cell differentiation based on their location. Sci Rep 2020; 10:3097. [PMID: 32080322 PMCID: PMC7033160 DOI: 10.1038/s41598-020-60047-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/04/2020] [Indexed: 01/22/2023] Open
Abstract
Histological and cytological observations of the human anterior cruciate ligament (ACL) had been described, but the differentiation potency based on their location is still unknown. To determine and compare proliferation and differentiation potential of cells derived from distal and middle thirds of the ACL remnant, ACL remnant was initially marked at the distal third (within 10 mm from the tibial insertion) and middle third (between 10-20 mm from the tibial insertion) and then dissected. Both the middle and distal third regions of ACL remnant were analyzed using CD34+ cell counting. Cell proliferation rate did not differ in both middle and distal third regions of ACL remnant, but they showed different characteristics in cell differentiation depending on their location. The distal third region of the ACL remnant had a tendency for chondrogenic differentiation with higher expression of CD34+ cells. On the other hand, the middle third region of ACL remnant had a strong tendency for osteogenic and ligamentous differentiation. Characteristics of the ACL remnant tissues should be considered when performing remnant-preserving or harvesting ACL remnants for tissue engineering.
Collapse
Affiliation(s)
- Jin Kyu Lee
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Young Lim Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul, Republic of Korea
| | - Jun-Seob Song
- Department of Orthopaedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Lin Y, Nan J, Shen J, Lv X, Chen X, Lu X, Zhang C, Xiang P, Wang Z, Li Z. Canagliflozin impairs blood reperfusion of ischaemic lower limb partially by inhibiting the retention and paracrine function of bone marrow derived mesenchymal stem cells. EBioMedicine 2020; 52:102637. [PMID: 31981975 PMCID: PMC6992997 DOI: 10.1016/j.ebiom.2020.102637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Canagliflozin (CANA) administration increases the risk of lower limb amputation in the clinic. The present study aimed to investigate whether and how CANA interferes with the intracellular physiological processes of bone marrow derived mesenchymal stem cells (BM-MSCs) and its contribution to ischaemic lower limb. Methods The in vivo blood flow recovery in ischaemic lower limbs following CANA treatment was evaluated. The cellular function of BM-MSCs after CANA treatment were also assessed in vitro. In silico docking analysis and mutant substitution assay were conducted to confirm the interaction of CANA with glutamate dehydrogenase 1 (GDH1). Findings Following CANA treatment, attenuated angiogenesis and hampered blood flow recovery in the ischaemic region were detected in diabetic and non-diabetic mice, and inhibition of the proliferation and migration of BM-MSCs were also observed. CANA was involved in mitochondrial respiratory malfunction in BM-MSCs and the inhibition of ATP production, cytochrome c release and vessel endothelial growth factor A (VEGFA) secretion, which may contribute to reductions in the tissue repair capacity of BM-MSCs. The detrimental effects of CANA on MSCs result from the inhibition of GDH1 by CANA (evidenced by in silico docking analysis and H199A-GDH1/N392A-GDH1 mutant substitution). Interpretation Our work highlights that the inhibition of GDH1 activity by CANA interferes with the metabolic activity of the mitochondria, and this interference deteriorates the retention of and VEGFA secretion by MSCs. Funding National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province and Wenzhou Science and Technology Bureau Foundation.
Collapse
Affiliation(s)
- Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jian Shen
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xinhuang Lv
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiao Chen
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xingmei Lu
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chi Zhang
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Pingping Xiang
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Zhiting Wang
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Zhengzheng Li
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
37
|
Zhao X, Ruan J, Tang H, Li J, Shi Y, Li M, Li S, Xu C, Lu Q, Dai C. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther 2019; 10:308. [PMID: 31639063 PMCID: PMC6805685 DOI: 10.1186/s13287-019-1406-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We used multimodal compositional magnetic resonance imaging (MRI) techniques, combined with clinical outcomes, to differentiate the alternations of composition in repair cartilage with allogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) in knee osteoarthritis (KOA) patients. METHODS Eighteen patients participated a phase I/IIa clinical trial. All patients were divided randomly into three groups with intra-articular injections of haMPCs: the low-dose (1.0 × 107 cells), mid-dose (2.0 × 107), and high-dose (5.0 × 107) groups with six patients each. Compositional MRI examinations and clinical evaluations were performed at different time points. RESULTS Significant differences were observed in quantitative T1rho, T2, T2star, R2star, and ADC measurements in patients of three dose groups, suggesting a possible compositional changes of cartilage with the treatment of allogeneic haMPCs. Also significant reduction in WOMAC and SF-36 scores showed the symptoms might be alleviated to some extent with this new treatment. As regards sensibilities of multi-parametric mappings to detect compositional or structural changes of cartilage, T1rho mapping was most sensitive to differentiate difference between three dose groups. CONCLUSIONS These results showed that multi-compositional MRI sequences might be an effective tool to evaluate the promotion of the repair of cartilage with allogeneic haMPCs by providing information of compositional alterations of cartilage. TRIAL REGISTRATION Clinicaltrials, NCT02641860 . Registered 3 December 2015.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Jingjing Ruan
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Hui Tang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Yingxuan Shi
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Meng Li
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Cuili Xu
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Qing Lu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China.
| |
Collapse
|
38
|
Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Sci Rep 2019; 9:13854. [PMID: 31554894 PMCID: PMC6761110 DOI: 10.1038/s41598-019-50435-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of the temporomandibular joint (TMJ) characterised by chronic inflammation and damage to joint structures. Because of the complexity of TMJ-OA, only symptomatic treatments are currently available. Recent reports have shown that many of stem cells can exert anti-inflammatory and tissue-regenerating effects. In this study, we investigated the potential cartilage-regenerating and anti-inflammatory effects of human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs) for the treatment of TMJ-OA. hUCM-MSC lines, isolated from different donors, which showed different activities in vitro. Using a selected cell line, we used different concentrations of hUCM-MSCs to assess therapeutic effects in a rabbit model of monosodium iodoacetate-induced TMJ-OA. Compared with the untreated control group, the potential regenerative result and anti-inflammatory effects of hUCM-MSCs were evident at all the tested concentrations in rabbits with induced TMJ-OA. The median dose of hUCM-MSCs showed the prominent cartilage protective effect and further cartilage regeneration potential. This effect occurred via upregulated expression of growth factors, extracellular matrix markers, and anti-inflammatory cytokines, and reduced expression of pro-inflammatory cytokines. The anti-inflammatory effect of hUCM-MSCs was comparable to that of dexamethasone (DEX). However, only hUCM-MSCs showed potential chondrogenesis effects in this study. In conclusion, our results indicate that hUCM-MSCs may be an effective treatment option for the treatment of TMJ-OA.
Collapse
|
39
|
Jiang B, Fu X, Yan L, Li S, Zhao D, Wang X, Duan Y, Yan Y, Li E, Wu K, Inglis BM, Ji W, Xu RH, Si W. Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Am J Cancer Res 2019; 9:6587-6600. [PMID: 31588237 PMCID: PMC6771254 DOI: 10.7150/thno.35391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
It has been demonstrated that mesenchymal stem cells (MSCs) differentiated from human embryonic stem cells (hESCs), name EMSCs, can treat a variety of autoimmune and inflammatory diseases, with similar efficacies to those achieved with MSCs derived from somatic tissues such as bone marrow (BMSCs). The chance increases even higher for EMSCs, than somatic tissue derived MSCs, to become a cell drug as the former can be produced in large scale from an unlimited hESC line with easier quality control and less biosafety concern. We have further demonstrated that both human ESCs and EMSCs, after aggregation to form spheroids, can tolerate hypoxic and ambient conditions (AC) for over 4 and 10 days, respectively, without loss of their viability and alteration of their functions. Based on these advantages, we decided to test whether EMSC spheroids, made in large quantity and delivered through a long-term distance at AC, can treat osteoarthritis spontaneously developed in rhesus macaques (M. mulatta) monkeys as well as the allogenic MSCs. Methods: Xenogeneic AC-transported EMSC spheroids or allogenic BMSCs were injected into the articular cavity of both knees of the monkeys at 3 animals per group. Another two macaques were injected the same way with saline as controls. Results: Both EMSCs and BMSCs groups showed significant amelioration indicated by the reduction of swelling joint size and amplification of keen flare angle post-treatment, compared to the control group. Examinations via X-ray and MRI also indicated the decrease of inflammation and osteophyma, and recovery of the synovium and cartilage in both treated groups. No sign of allergy or graft versus host disease was observed in the animals. Conclusion: Our results demonstrate that human EMSC spheroids can prevent the osteoarthtitis progression and ameliorate osteoarthritis in the rhesus macaques as well as allogenic BMSCs, and this study shall help advance the clinical application of EMSCs.
Collapse
|
40
|
Sakamoto T, Miyazaki T, Watanabe S, Takahashi A, Honjoh K, Nakajima H, Oki H, Kokubo Y, Matsumine A. Intraarticular injection of processed lipoaspirate cells has anti-inflammatory and analgesic effects but does not improve degenerative changes in murine monoiodoacetate-induced osteoarthritis. BMC Musculoskelet Disord 2019; 20:335. [PMID: 31324245 PMCID: PMC6642531 DOI: 10.1186/s12891-019-2710-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous basic research and clinical studies examined the effects of mesenchymal stem cells (MSCs) on regeneration and maintenance of articular cartilage. However, our pilot study suggested that MSCs are more effective at suppressing inflammation and pain rather than promoting cartilage regeneration in osteoarthritis. Adipose tissue is considered a useful source of MSCs; it can be harvested easily in larger quantities compared with the bone marrow. The present study was designed to evaluate the anti-inflammatory, analgesic, and regenerative effects of intra-articularly injected processed lipoaspirate (PLA) cells (containing adipose-derived MSCs) on degenerative cartilage in a rat osteoarthritis model. METHODS PLA cells were isolated from subcutaneous adipose tissue of 12-week-old female Sprague-Dawley rats. Osteoarthritis was induced by injection of monoiodoacetate (MIA). Each rat received 1 × 106 MSCs into the joint at day 7 (early injection group) and day 14 (late injection group) post-MIA injection. At 7, 14, 21 days after MIA administration, pain was assessed by immunostaining and western blotting of dorsal root ganglion (DRG). Cartilage quality was assessed macroscopically and by safranin-O and H&E staining, and joint inflammation was assessed by western blotting of the synovium. RESULTS The early injection group showed less cartilage degradation, whereas the late injection group showed cartilage damage similar to untreated OA group. The relative expression level of CGRP protein in DRG neurons was significantly lower in the two treatment groups, compared with the untreated group. CONCLUSIONS Intra-articular injection of PLA cells prevented degenerative changes in the early injection group, but had little effect in promoting cartilage repair in the late injection group. Interestingly, intra-articular injection of PLA cells resulted in suppression of inflammation and pain in both OA groups. Further studies are needed to determine the long-term effects of intra-articular injection of PLA cells in osteoarthritis.
Collapse
Affiliation(s)
- Takumi Sakamoto
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan.
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Ai Takahashi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hisashi Oki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Yasuo Kokubo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
41
|
Mahmoud EE, Adachi N, Mawas AS, Deie M, Ochi M. Multiple intra-articular injections of allogeneic bone marrow-derived stem cells potentially improve knee lesions resulting from surgically induced osteoarthritis: an animal study. Bone Joint J 2019; 101-B:824-831. [PMID: 31256666 DOI: 10.1302/0301-620x.101b7.bjj-2018-1532.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. MATERIALS AND METHODS Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II. RESULTS Within the PBS injection (control group), typical progressive degenerative changes were revealed in the various knee structures. In the single MSC injection (single group), osteoarthritic changes were attenuated, but still appeared, especially in the medial compartments involving fibrillation of the articular cartilage, osteophyte formation in the medial plateau, and longitudinal tear of the meniscus. In the multiple-injections group, the smoothness and texture of the articular cartilage and meniscus were improved. Histologically, absence or reduction in matrix staining and cellularity were noticeable in the control and single-injection groups, respectively, in contrast to the multiple-injections group, which showed good intensity of matrix staining and chondrocyte distribution in the various cartilage zones. Osteoarthritis Research Society International (OARSI) scoring showed significantly better results in the multiple-injections group than in the other groups. Immunohistochemically, collagen I existed superficially in the medial femoral condyle in the single group, while collagen II was more evident in the multiple-injections group than the single-injection group. CONCLUSION A single injection of MSCs was not enough to restore the condition of osteoarthritic joints. This is in contrast to multiple injections of MSCs, which had the ability to replace lost cells, as well as reducing inflammation. Cite this article: Bone Joint J 2019;101-B:824-831.
Collapse
Affiliation(s)
- E E Mahmoud
- Department of Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - N Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - A S Mawas
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - M Deie
- Department of Orthopaedic Surgery, Aichi Medical University, Aichi, Japan
| | - M Ochi
- Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Hashimoto Y, Nishida Y, Takahashi S, Nakamura H, Mera H, Kashiwa K, Yoshiya S, Inagaki Y, Uematsu K, Tanaka Y, Asada S, Akagi M, Fukuda K, Hosokawa Y, Myoui A, Kamei N, Ishikawa M, Adachi N, Ochi M, Wakitani S. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial. Regen Ther 2019; 11:106-113. [PMID: 31312692 PMCID: PMC6610227 DOI: 10.1016/j.reth.2019.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/06/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction To investigate the efficacy of the transplantation of autologous bone marrow-derived mesenchymal stem cells (BMSCs) under arthroscopy with microfracture (MFX) compared with microfracture alone. Methods Eleven patients with a symptomatic articular cartilage defect of the knee were included in the study. They were randomized to receive BMSCs with MFX (cell-T group, n=7) or MFX alone (control group, n=4). Clinical results were evaluated using International Knee Documentation committee (IKDC) knee evaluation questionnaires and the Knee Injury and Osteoarthritis Outcome Score (KOOS) before and 48 weeks after surgery. Quantitative and qualitative assessments of repair tissue were carried out at 48 weeks by T2 mapping of magnetic resonance images (MRIs) and the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system with follow-up MRI. Results No significant differences between preoperative and postoperative IKDC and KOOS were observed in the cell-T or control group. However, forty-eight weeks after surgery, the cell-T group showed a trend for a greater KOOS QOL score compared with the control group (79.4 vs. 39.1, respectively; P=0.07). The T2 value did not differ significantly between the two groups, but the mean MOCART score was significantly higher in the cell-T group than in the control group (P=0.02). Conclusions Compared with MFX alone, BMSC transplantation with MFX resulted in better postoperative healing of the cartilage and subchondral bone as determined by the MOCART score. Clinically, BMSC transplantation with MFX gave a higher KOOS QOL score after 48 weeks. This is the first prospective randomized clinical trial between BMSCs with MFX and MFX alone. BMSCs with MFX showed a trend for a greater KOOS QOL score compared with MFX alone. BMSCs with MFX resulted in better healing of the cartilage by the MOCART score.
Collapse
Key Words
- BMSCs, bone marrow-derived mesenchymal stem cells
- Bone marrow-derived mesenchymal stem cells
- CPC, cell processing centers
- GFP, green fluorescent protein
- HA, hyaluronic acid
- IKDC, International Knee Documentation committee
- KL, Kellgren–Lawrence
- KOOS, Knee Injury and Osteoarthritis Outcome Score
- MFX, microfracture
- MOCART, magnetic resonance observation of cartilage repair tissue
- MRIs, magnetic resonance images
- Microfracture
- Prospective randomized control clinical trial
- QOL, quality of life
- RCT, randomized controlled trial
Collapse
Affiliation(s)
- Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takahashi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Mera
- Department of Orthopaedic Surgery, Uonuma Kikan Hospital, Minamiuonuma, Japan
| | - Kaori Kashiwa
- Department of Orthopaedic Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Shinichi Yoshiya
- Department of Orthopaedic Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Kota Uematsu
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Shigeki Asada
- Department of Orthopaedic Surgery, Kindai University Faculty Medicine, Osaka, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Faculty Medicine, Osaka, Japan
| | - Kanji Fukuda
- Institute of Advanced Clinical Medicine, Division of Cell Biology for Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yoshiya Hosokawa
- Medical Center for Translational Research, Osaka University Hospital, Osaka, Japan
| | - Akira Myoui
- Medical Center for Translational Research, Osaka University Hospital, Osaka, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences. Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences. Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences. Hiroshima University, Hiroshima, Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences. Hiroshima University, Hiroshima, Japan
| | | |
Collapse
|
43
|
Robinson PG, Murray IR, West CC, Goudie EB, Yong LY, White TO, LaPrade RF. Reporting of Mesenchymal Stem Cell Preparation Protocols and Composition: A Systematic Review of the Clinical Orthopaedic Literature. Am J Sports Med 2019; 47:991-1000. [PMID: 29554460 DOI: 10.1177/0363546518758667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are increasingly being used in the treatment of a wide variety of sports-related conditions. Despite this enthusiasm, the biological properties of MSCs and their effects on musculoskeletal tissue healing remain poorly understood. MSC-based strategies encompass cell populations with heterogeneous phenotypes isolated from multiple tissues and using different methods. Therefore, comprehensive reporting of the source, preparation methods, and characteristics of MSC strategies is essential to enable interpretation of results. PURPOSE To perform a systematic review of levels of reporting of key variables in MSC preparation and composition for clinical studies evaluating MSC-based therapies in the treatment of musculoskeletal conditions. STUDY DESIGN Systematic review. METHODS A systematic review of the clinical orthopaedic and sports medicine literature from 2002 to 2017 was performed. The following inclusion criteria were used: human clinical trials, published in the English language, involving the administration of MSC-based therapies for orthopaedic or sports medicine applications. In vitro or ex vivo studies, editorials, letters to the editor, and studies relating to cosmetic, neurological, or dental applications were excluded. RESULTS Of the 1259 studies identified on the initial search, 36 studies were found to satisfy the inclusion criteria for analysis on comprehensive review. Fifty-seven percent of studies evaluated bone marrow-derived MSCs, 41% evaluated adipose-derived MSCs, and 2% evaluated synovium-derived MSCs. Considerable deficiencies in the reporting of key variables, including the details of stem cell processing, culture conditions, and the characteristics of cell populations delivered, were noted. Overall, studies reported only 52% (range, 30%-80%) of variables that may critically influence outcome. No study provided adequate information relating to all of these variables. CONCLUSION All existing clinical studies evaluating MSCs for orthopaedic or sports medicine applications are limited by inadequate reporting of both preparation protocols and composition. Deficient reporting of the variables that may critically influence outcome precludes interpretation, prevents others from reproducing experimental conditions, and makes comparisons across studies difficult. We encourage the adoption of emerging minimum reporting standards for clinical studies evaluating the use of MSCs in orthopaedics.
Collapse
Affiliation(s)
| | - Iain R Murray
- Department of Trauma and Orthopaedics, University of Edinburgh, UK.,Scottish Centre for Regenerative Medicine, University of Edinburgh, UK
| | | | - Ewan B Goudie
- Department of Trauma and Orthopaedics, University of Edinburgh, UK
| | - Li Y Yong
- Scottish Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Timothy O White
- Department of Trauma and Orthopaedics, University of Edinburgh, UK
| | | |
Collapse
|
44
|
Yan Z, Guo F, Yuan Q, Shao Y, Zhang Y, Wang H, Hao S, Du X. Endometrial mesenchymal stem cells isolated from menstrual blood repaired epirubicin-induced damage to human ovarian granulosa cells by inhibiting the expression of Gadd45b in cell cycle pathway. Stem Cell Res Ther 2019; 10:4. [PMID: 30606243 PMCID: PMC6318935 DOI: 10.1186/s13287-018-1101-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Background To explore the effect of mesenchymal stem cells isolated from menstrual blood (MB-MSCs) on epirubicin-induced damage to human ovarian granulosa cells (GCs) and its potential mechanisms. Methods The estradiol, progesterone, anti-Müllerian hormone, inhibin A, and inhibin B levels were determined using enzyme-linked immunosorbent assay. The proliferation of GCs was detected by Cell Counting Kit-8 assays. The cell cycle distribution was detected by propidiumiodide single staining. The apoptosis of GCs was determined using Annexin V and 7-AAD double staining. The differentially expressed genes of GCs were analyzed with Affymetrix Human Transcriptome Array 2.0 gene chip and verified with Western blot analysis. Results Epirubicin inhibited the secretion of estradiol, progesterone, anti-Müllerian hormone, inhibin A, and inhibin B and the proliferation of GCs; arrested these GCs in G2/M phase; and promoted the apoptosis of GCs. However, MB-MSCs repaired epirubicin-induced damage to GCs. Differentially expressed genes of GCs, Gadd45b, CyclinB1, and CDC2, were found by microarray and bioinformatics analysis. Western blot showed that epirubicin upregulated Gadd45b protein expression and downregulated CyclinB1 and CDC2 protein expression, while MB-MSCs downregulated Gadd45b protein expression and upregulated CyclinB1 and CDC2 protein expression. Conclusions MB-MSCs repaired epirubicin-induced damage to GCs, which might be related to the inhibition of Gadd45b protein expression.
Collapse
Affiliation(s)
- Zhongrui Yan
- Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Fengyi Guo
- Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Qing Yuan
- Maternal and Child Health Care Hospital of Shandong Province, NO.238, Jingshi Road, Jinanlixia District, Jinan, 250014, China
| | - Yu Shao
- Maternal and Child Health Hospital of Guiyang City, NO.63, Ruijin south Road, Nanming District, Guiyang City, 550003, Guizhou Province, China
| | - Yedan Zhang
- Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Huiyan Wang
- Reproductive Medical Center, Tianjin Central Hospital of Gynecology Obstetrics, NO.156, Nankai Sanma Road, Nankai District, Tianjin, 300010, China
| | - Shaohua Hao
- Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Xue Du
- Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
45
|
Mahmoud EE, Kamei N, Kamei G, Nakasa T, Shimizu R, Harada Y, Adachi N, Misk NA, Ochi M. Role of Mesenchymal Stem Cells Densities When Injected as Suspension in Joints with Osteochondral Defects. Cartilage 2019; 10:61-69. [PMID: 28486813 PMCID: PMC6376564 DOI: 10.1177/1947603517708333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate an intraarticular injection of different doses of autologous mesenchymal stem cells (MSCs) for improving repair of midterm osteochondral defect. DESIGN At 4 weeks postoperative marrow stimulation model bilaterally (3 mm diameter; 4 mm depth) in the medial femoral condyle, autologous MSCs were injected into knee joint. Twenty-four Japanese rabbits aged 6 months were divided randomly into 4 groups ( n = 6 per group): the control group and and MSC groups including 0.125, 1.25, and 6.25 million MSCs. Repaired tissue was assessed macroscopically and histologically at 4 and 12 weeks after intraarticular injection of MSCs. RESULTS At 12 weeks, there was no repair tissue in the control group. The gross appearance of the 1.25 and 6.25 million MSC groups revealed complete repair of the defect with white to pink tissue at 12 weeks. An osteochondral repair was histologically significantly better in the 1.25 and 6.25 million MSC groups than in the control and 0.125 million MSC groups at 4 and 12 weeks, due to presence of hyaline-like tissue in the deep layer at 4 weeks, and at 12 weeks hyaline cartilage formation at the periphery and fibrous tissue containing some chondrocytes in the deep layer of the center of the defect. Subchondral bone was restructured in the 1.25 and 6.25 million MSC groups, although it did not resemble the normal bone. CONCLUSION An intraarticular injection of 1.25 or 6.25 million MSCs could promote the repair of subchondral bone, even in the case of midterm osteochondral defect.
Collapse
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Naosuke Kamei, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Goki Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Shimizu
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nabil Ahmed Misk
- Department of Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
46
|
Sadahide K, Teishima J, Inoue S, Tamura T, Kamei N, Adachi N, Matsubara A. Endoscopic repair of the urinary bladder with magnetically labeled mesenchymal stem cells: Preliminary report. Regen Ther 2018; 10:46-53. [PMID: 30581896 PMCID: PMC6299148 DOI: 10.1016/j.reth.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Transurethral resection of a bladder tumor (TURBT) using a resectoscope has been standard treatment for bladder cancer. However, no treatment method promotes the repair of resected bladder tissue. The aim of this study was to examine the healing process of damaged bladder tissue after a transurethral injection of bone marrow mesenchymal stem cells (MSCs) into the bladder. An injection of magnetic MSCs meant that they accumulated in the damaged area of the bladder. Another aim of this study was to compare the acceleration effect of MSC magnetic delivery on the repair of bladder tissue with that of non-magnetic MSC injection. Methods Using the transurethral approach to avoid opening the abdomen, electrofulguration was carried out on the anterior wall of the urinary bladder of white Japanese rabbits to mimic tumor resection. An external magnetic field directed at the injured site was then applied using a 1-tesla (T) permanent magnet. Twelve rabbits were divided into three groups. The 1 × 106 of magnetically labeled MSCs were injected into the urinary bladder with or without the magnetic field (MSC M+ and MSC M-groups, respectively), and phosphate-buffered saline was injected as the control. The effects of the injections in the three groups at 14 days were examined using 4.7-T magnetic resonance imaging (MRI) then macroscopically and histologically. The mRNA expressions of several cytokines in the repair tissues were assessed using real-time polymerase chain reaction. Results The macroscopic findings showed the area of repair tissue in the MSC M+ group to be larger than that in either the MSC M-group or control group. MRI clearly depicted the macroscopic findings. The histological study showed that repair of the cauterized area with myofibrous tissue was significantly better in the MSC M+ group than that in either the MSC M-group or control group, although there was no significant difference in several mRNA cytokines among the three groups at 14 days after surgery. Conclusions The magnetic delivery of MSCs shows promise as an effective, minimally invasive method of enhancing tissue regeneration after TURBT.
Collapse
Key Words
- BC, urinary bladder cancer
- Bone marrow
- Cancer
- FA, flip angle
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- MRI, Magnetic resonance imaging
- MSC, mesenchymal stem cell
- Mesenchymal stem cell
- NEX, number of excitations
- NMIBC, non-muscle invasive urinary bladder cancer
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Regeneration
- SPION, superparamagnetic iron oxide nanoparticle
- TE, echo time
- TR, repetition time
- TURBT, transurethral resection of bladder tumor
- Transurethral resection
- Urinary bladder
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Kosuke Sadahide
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Corresponding author.
| | - Jun Teishima
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Tamura
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
47
|
Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ. Bioactive hydrogels for bone regeneration. Bioact Mater 2018; 3:401-417. [PMID: 30003179 PMCID: PMC6038268 DOI: 10.1016/j.bioactmat.2018.05.006] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Bone self-healing is limited and generally requires external intervention to augment bone repair and regeneration. While traditional methods for repairing bone defects such as autografts, allografts, and xenografts have been widely used, they all have corresponding disadvantages, thus limiting their clinical use. Despite the development of a variety of biomaterials, including metal implants, calcium phosphate cements (CPC), hydroxyapatite, etc., the desired therapeutic effect is not fully achieved. Currently, polymeric scaffolds, particularly hydrogels, are of interest and their unique configurations and tunable physicochemical properties have been extensively studied. This review will focus on the applications of various cutting-edge bioactive hydrogels systems in bone regeneration, as well as their advantages and limitations. We will examine the composition and defects of the bone, discuss the current biomaterials for bone regeneration, and classify recently developed polymeric materials for hydrogel synthesis. We will also elaborate on the properties of desirable hydrogels as well as the fabrication techniques and different delivery strategies. Finally, the existing challenges, considerations, and the future prospective of hydrogels in bone regeneration will be outlined.
Collapse
Affiliation(s)
- Xin Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Sahla Syed
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jerry Zhuang
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
48
|
Ota Y, Kamei N, Tamaura T, Adachi N, Ochi M. Magnetic Resonance Imaging Evaluation of Cartilage Repair and Iron Particle Kinetics After Magnetic Delivery of Stem Cells. Tissue Eng Part C Methods 2018; 24:679-687. [PMID: 30398400 DOI: 10.1089/ten.tec.2018.0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IMPACT STATEMENT This study is very important as a preclinical study of magnetic resonance imaging (MRI) assessment after magnetic targeting of mesenchymal stem cells. The findings of this study show that MRI is useful for evaluating the regenerative process of cartilage with magnetic targeting and kinetics of iron particles, and is less invasive without any complications.
Collapse
Affiliation(s)
- Yuki Ota
- 1 Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naosuke Kamei
- 1 Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,2 Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Takayuki Tamaura
- 3 Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- 1 Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuo Ochi
- 4 Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
49
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
50
|
Akatsu Y, Enomoto T, Yamaguchi S, Tahara M, Fukawa T, Endo J, Hoshi H, Yamamoto Y, Sasaki T, Takahashi K, Akagi R, Sasho T. Age-dependent differences in response to partial-thickness cartilage defects in a rat model as a measure to evaluate the efficacy of interventions for cartilage repair. Cell Tissue Res 2018; 375:425-435. [PMID: 30259137 DOI: 10.1007/s00441-018-2914-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Abstract
The objectives of this study are (1) to examine age-dependent longitudinal differences in histological responses after creation of partial-thickness articular cartilage defects (PTCDs) in rats and to use this model (2) to objectively evaluate the effectiveness of interventions for cartilage repair. Linear PTCDs were created at a depth of 100 μm in the weight-bearing region of the medial femoral condyle in rats of different ages (3 weeks, 6 weeks, 10 weeks and 14 weeks). One day, one week, two weeks, four weeks and twelve weeks after PTCD generation, spontaneous healing was evaluated histologically and immunohistochemically. Effects of interventions comprising mesenchymal stem cells (MSCs) or platelet-rich plasma (PRP) or both on 14-week-old PTCD rats were evaluated and compared with natural courses in rats of other ages. Younger rats exhibited better cartilage repair. Cartilage in 3-week-old and 6-week-old rats exhibited nearly normal restoration after 4-12 weeks. Cartilage in 14-week-old rats deteriorated over time and early signs of cartilage degeneration were observed. With injection of MCSs alone or MSCs + PRP, 14-week-old PTCD rats showed almost the same reparative cartilage as 6-week-old rats. With injection of PRP, 14-week-old PTCD rats showed almost the same reparative cartilage as 10-week-old rats. This model will be of great use to objectively compare the effects of interventions for small cartilage lesions and may help to advance the development of disease-modifying osteoarthritis drugs.
Collapse
Affiliation(s)
- Yorikazu Akatsu
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takahiro Enomoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Satoshi Yamaguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masamichi Tahara
- Department of Orthopaedic Surgery, Chiba-East-Hospital, Chiba, Japan
| | - Taisuke Fukawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Jun Endo
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroko Hoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yohei Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshihide Sasaki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryuichiro Akagi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takahisa Sasho
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan.
| |
Collapse
|