1
|
Gut microbiome dysregulation drives bone damage in broiler tibial dyschondroplasia by disrupting glucose homeostasis. NPJ Biofilms Microbiomes 2023; 9:1. [PMID: 36596826 PMCID: PMC9810666 DOI: 10.1038/s41522-022-00360-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Tibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function. Importantly, faecal microbiota transplantation (FMT) of gut microbes from normal donors rehabilitated the GM and decreased the elevated GLU levels in TD broilers. A high GLU level is a predisposing factor to bone disease, suggesting that GM dysbiosis-mediated hyperglycaemia might be involved in bone regulation. 16S rRNA gene sequencing and short-chain fatty acid analysis revealed that the significantly increased level of the metabolite butyric acid derived from the genera Blautia and Coprococcus regulated GLU levels in TD broilers by binding to GPR109A in the pancreas. Tibial studies showed reduced expression of vascular regulatory factors (including PI3K, AKT and VEFGA) based on transcriptomics analysis and reduced vascular distribution, contributing to nonvascularization of cartilage in the proximal tibial growth plate of TD broilers with elevated GLU levels. Additionally, treatment with the total flavonoids from Rhizoma drynariae further validated the improvement in bone homoeostasis in TD broilers by regulating GLU levels through the regulation of GM to subsequently improve intestinal and pancreatic function. These findings clarify the critical role of GM-mediated changes in GLU levels via the gut-pancreas axis in bone homoeostasis in TD chickens.
Collapse
|
2
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
3
|
Zhang M, Matinlinna JP, Tsoi JK, Liu W, Cui X, Lu WW, Pan H. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview. J Orthop Translat 2020; 22:26-33. [PMID: 32440496 PMCID: PMC7231954 DOI: 10.1016/j.jot.2019.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of long-bone segmental defects (LBSDs) has been one of the biggest challenges in orthopaedics. Biomaterials for the reconstruction are required to be strong, osteoinductive, osteoconductive, and allowing for fast angiogenesis, without causing any immune rejection or disease transmission. There are four main types of biomaterials including autograft, allograft, artificial material, and tissue-engineered bone. Remarkable progress has been made in LBSD reconstruction biomaterials in the last ten years. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our aim is to summarize recent developments in the divided four biomaterials utilized in the LBSD reconstruction to provide the clinicians with new information and comprehension from the biomaterial point of view.
Collapse
Key Words
- ADSC, allogenic adipose-derived stem cells
- ALLO, partially demineralized allogeneic bone block
- ALP, alkaline phosphatase
- ASC, adipose-derived stem cell
- Allograft
- Artificial material
- Autograft
- BMP-2 & 4, bone morphogenetic protein-2 & 4
- BMSC, bone marrow–derived mesenchymal stem cell
- BV, baculovirus
- Biomaterial
- CS, chitosan
- DBM, decalcified bone matrix
- FGF-2, Fibroblast Growth Factor-2
- HDB, heterogeneous deproteinized bone
- LBSD, long-bone segmental defect
- Long-bone segmental defect reconstruction
- M-CSF, macrophage colony-stimulating factor
- MIC, fresh marrow-impregnated ceramic block
- MSC, autologous mesenchymal stem cells
- PCL, polycaprolactone
- PDGF, Platelet-Derived Growth Factor
- PDLLA, poly(DL-lactide)
- PET/CT, positron emission- and computed tomography
- PLA, poly(lactic acid)
- PPF, propylene fumarate
- SF, silk fibroin
- TCP, tricalcium phosphate
- TEB, combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma
- TGF-β, Transforming Growth Factor-β
- Tissue engineering
- VEGF, Vascular Endothelial Growth Factor
- bFGF, basic Fibroblast Growth Factor
- htMSCs, human tubal mesenchymal stem cells
- nHA, nano-hydroxyapatite
- poly, (L-lactide-co-D,L-lactide)
- rADSC, rabbit adipose-derived mesenchymal stem cell
- rVEGF-A, recombinant vascular endothelial growth factor-A
- rhBMP-2, recombinant human bone morphogenetic protein-2
- rhBMP-7, recombinant human bone morphogenetic protein 7
- sRANKL, soluble RANKL
- β-TCP, β-tricalcium phosphate
Collapse
Affiliation(s)
- Meng Zhang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Jukka P. Matinlinna
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - James K.H. Tsoi
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Wenlong Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xu Cui
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - William W. Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| |
Collapse
|