1
|
Quantitative Analysis of Contrast-Enhanced Ultrasound That Can Be Used to Evaluate Angiogenesis during Patellar Tendon Healing in Rats. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6867743. [PMID: 36313964 PMCID: PMC9584743 DOI: 10.1155/2022/6867743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
Objective To investigate the efficacy of contrast-enhanced ultrasound (CEUS) in quantitatively evaluating angiogenesis during patellar tendon healing in rats. Methods A total of 40 Sprague-Dawley rats were used in this study. The patellar tendons of 30 rats (60 limbs) that underwent incision and suture were treated as the operation group and monitored after 7, 14, and 28 days. The normal patellar tendons of 10 rats (20 limbs) were treated as the control group and monitored on day 0. The ultrasound examination was used to evaluate the structure and blood perfusion of the patellar tendon. Immunohistochemistry was used to assess angiogenesis, and the biomechanical test was used to verify functional recovery of the patellar tendon. Results The tendons in the operation group were significantly thickened compared with those in the control group (p < 0.01). The peak intensity (PI) in CEUS of the tendons showed a clear difference at each time point after the surgery (p < 0.01). PI increased in the operation group with a maximum on day 7, and then gradually decreased until day 28 when PI was close to the basic intensity (BI) in the control group (p > 0.05). It was consistent with the change of the CD31-positive staining areas representing angiogenesis of the injured patellar tendons. The PI was positively correlated with the CD31-positive staining area fraction (R = 0.849, p < 0.001). The failure load and tensile strength of the repaired patellar tendons in the operation group increased over time. The PI showed negative correlations with the failure load (R = -0.787, p < 0.001) and tensile strength (R = -0.714, p < 0.001). Conclusion The PI in CEUS could quantitatively reflect the time-dependent change in the blood supply of the healing site, and the PI correlated with histologic and biomechanical properties of the healing tendon. Quantitative analysis of contrast-enhanced ultrasound could be a useful method to evaluate angiogenesis in healing tendons.
Collapse
|
2
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Ghelfi J, Bacle M, Stephanov O, de Forges H, Soulairol I, Roger P, Ferretti GR, Beregi JP, Frandon J. Collagenase-Induced Patellar Tendinopathy with Neovascularization: First Results towards a Piglet Model of Musculoskeletal Embolization. Biomedicines 2021; 10:biomedicines10010002. [PMID: 35052682 PMCID: PMC8773136 DOI: 10.3390/biomedicines10010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Therapeutic strategies targeting neovessels responsible for musculoskeletal chronic pain have emerged, including neovessels embolization. Our study aimed to develop a large animal model of patellar tendinopathy with neovascularization. Methods: Nine 3-month-old male piglets (18 patellar tendons) received percutaneous injections of increasing doses of collagenase (0 to 50 mg) at day 0 (D0). Tendinopathy was evaluated by ultrasound (D7 and D14). Neovascularization was evaluated visually and on angiographies. Bonar score was used for histological analysis (D14). Correlations were evaluated using Spearman’s rank (Rs) test. Results: Research protocol was well tolerated. All tendons were enlarged with a median increase of 31.58% [25–40.28] at D7 (p = 0.244) at D7 and 57.52% [48.41–91.45] at D14 (p = 0.065). Tendons with collagenase injection had more hypoechoic changes, with one tendon rupture (p = 0.012). Neovascularization was reported above 5 mg collagenase (p < 0.01) at D7 and D14 with dose-related neovessels induction (Rs = 0.8, p < 0.001). The Bonar score increased above 5 mg collagenase, correlated with the dose (Rs = 0.666, p = 0.003). Conclusions: The study shows the feasibility, safety and reproducibility of this new large animal model of patellar tendinopathy with neovascularization after collagenase injection. It will allow studying new treatments on direct embolization of neovessels by endovascular approach.
Collapse
Affiliation(s)
- Julien Ghelfi
- Service de Radiologie Diagnostique et Interventionnelle, CHU Grenoble Alpes, 38043 Grenoble, France; (J.G.); (G.R.F.)
- Department of Medical Imaging, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, 30000 Nimes, France; (H.d.F.); (J.-P.B.)
| | - Marylène Bacle
- Faculty of Medicine, Montpellier Nîmes University, RAM-PTNIM, 30000 Nimes, France;
| | - Olivier Stephanov
- Anatomopathology Department, Grenoble University Hospital, 38043 Grenoble, France;
| | - Hélène de Forges
- Department of Medical Imaging, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, 30000 Nimes, France; (H.d.F.); (J.-P.B.)
| | - Ian Soulairol
- Department of Pharmacy, Nîmes University Hospital, 30000 Nimes, France;
- ICGM, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Pascal Roger
- Anatomopathology Department, Nimes University Hospital, University of Montpellier, 30000 Nimes, France;
| | - Gilbert R. Ferretti
- Service de Radiologie Diagnostique et Interventionnelle, CHU Grenoble Alpes, 38043 Grenoble, France; (J.G.); (G.R.F.)
| | - Jean-Paul Beregi
- Department of Medical Imaging, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, 30000 Nimes, France; (H.d.F.); (J.-P.B.)
| | - Julien Frandon
- Department of Medical Imaging, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, 30000 Nimes, France; (H.d.F.); (J.-P.B.)
- Correspondence: ; Tel.: +33-4-66-68-67-22
| |
Collapse
|
4
|
Liu X, Zhu B, Li Y, Liu X, Guo S, Wang C, Li S, Wang D. The Role of Vascular Endothelial Growth Factor in Tendon Healing. Front Physiol 2021; 12:766080. [PMID: 34777022 PMCID: PMC8579915 DOI: 10.3389/fphys.2021.766080] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is crucial to facilitate tendon healing, such as delivering oxygen and nutrients, removing waste products, and controlling immune responses. Vascular endothelial growth factor (VEGF) is one of the most vital angiogenic factors that regulate blood vessel formation in tendon healing. Recently, biological therapies, including the application of exogenous VEGF, have been attracting increasing attention. However, at present, the effect of the application of exogenous VEGF in tendon healing is controversial, as the role of endogenous VEGF in tendons has also not been fully elucidated. This article will summarize the role of both endogenous and exogenous VEGF in tendon healing and discuss possible reasons for the controversy. The present review shows that tendon repair is facilitated only by proper angiogenesis and VEGF at the early stage, whereas the persistent high VEGF expression and prolonged presence of blood vessels may impair tendon repair at a later stage.
Collapse
Affiliation(s)
- Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China.,Department of Rehabilitation, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
The Effects of Hypoxia-Reoxygenation in Mouse Digital Flexor Tendon-Derived Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7305392. [PMID: 33456674 PMCID: PMC7787768 DOI: 10.1155/2020/7305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
Objective Ischemia-reperfusion injury refers to the exacerbated and irreversible tissue damage caused by blood flow restoration after a period of ischemia. The hypoxia-reoxygenation (H/R) model in vitro is ideal for studying ischemia-reperfusion injury at the cellular level. We employed this model and investigated the effects of cobalt chloride- (CoCl2-) induced H/R in cells derived from mouse digital flexor tendons. Materials and Methods Various H/R conditions were simulated via treatment of tendon-derived cells with different concentrations of CoCl2 for 24 h, followed by removal of CoCl2 to restore a normal oxygen state for up to 96 h. Cell viability was measured using the Cell Counting Kit-8 (CCK-8) assay. Cell growth was determined via observation of cell morphology and proliferation. Oxidative stress markers and mitochondrial activity were detected. The expression levels of hypoxia-inducible factor- (HIF-) 1α, vascular endothelial growth factor-A (VEGF-A), collagen I, and collagen III were determined using Western blot (WB), real-time PCR, and immunofluorescence staining. Cellular apoptosis was analyzed via flow cytometry, and the expression of apoptosis-related proteins Bax and bcl-2 was examined using WB. Results The cells treated with low concentrations of CoCl2 showed significantly increased cell viability after reoxygenation. The increase in cell viability was even more pronounced in cells that had been treated with high concentrations of CoCl2. Under H/R conditions, cell morphology and growth were unchanged, while oxidative stress reaction was induced and mitochondrial activity was increased. H/R exerted opposite effects on the expression of HIF-1α mRNA and protein. Meanwhile, the expression of VEGF-A was upregulated, whereas collagen type I and type III were significantly downregulated. The level of cellular apoptosis did not show significant changes during H/R, despite the significantly increased Bax protein and reduced bcl-2 protein levels that led to an increase in the Bax/bcl-2 ratio during reoxygenation. Conclusions Tendon-derived cells were highly tolerant to the hypoxic environments induced by CoCl2. Reoxygenation after hypoxia preconditioning promoted cell viability, especially in cells treated with high concentrations of CoCl2. H/R conditions caused oxidative stress responses but did not affect cell growth. The H/R process had a notable impact on collagen production and expression of apoptosis-related proteins by tendon-derived cells, while the level of cellular apoptosis remained unchanged.
Collapse
|
6
|
Schmitz N, Timmen M, Kostka K, Hoerr V, Schwarz C, Faber C, Hansen U, Matthys R, Raschke MJ, Stange R. A novel MRI compatible mouse fracture model to characterize and monitor bone regeneration and tissue composition. Sci Rep 2020; 10:16238. [PMID: 33004928 PMCID: PMC7529903 DOI: 10.1038/s41598-020-73301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Over the last years, murine in vivo magnetic resonance imaging (MRI) contributed to a new understanding of tissue composition, regeneration and diseases. Due to artefacts generated by the currently used metal implants, MRI is limited in fracture healing research so far. In this study, we investigated a novel MRI-compatible, ceramic intramedullary fracture implant during bone regeneration in mice. Three-point-bending revealed a higher stiffness of the ceramic material compared to the metal implants. Electron microscopy displayed a rough surface of the ceramic implant that was comparable to standard metal devices and allowed cell attachment and growth of osteoblastic cells. MicroCT-imaging illustrated the development of the callus around the fracture site indicating a regular progressing healing process when using the novel implant. In MRI, different callus tissues and the implant could clearly be distinguished from each other without any artefacts. Monitoring fracture healing using MRI-compatible implants will improve our knowledge of callus tissue regeneration by 3D insights longitudinal in the same living organism, which might also help to reduce the consumption of animals for future fracture healing studies, significantly. Finally, this study may be translated into clinical application to improve our knowledge about human bone regeneration.
Collapse
Affiliation(s)
- Nina Schmitz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Albert-Schweitzer-Campus 1, W1, 48149, Münster, Germany
| | - Katharina Kostka
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Albert-Schweitzer-Campus 1, W1, 48149, Münster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Muenster, Münster, Germany
| | - Christian Schwarz
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Muenster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Muenster, Münster, Germany
| | - Uwe Hansen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Albert-Schweitzer-Campus 1, W1, 48149, Münster, Germany
| | | | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Albert-Schweitzer-Campus 1, W1, 48149, Münster, Germany.
| |
Collapse
|