1
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
2
|
Patnaik R, Jannati S, Sivani BM, Rizzo M, Naidoo N, Banerjee Y. Efficient Generation of Chondrocytes From Bone Marrow-Derived Mesenchymal Stem Cells in a 3D Culture System: Protocol for a Practical Model for Assessing Anti-Inflammatory Therapies. JMIR Res Protoc 2023; 12:e42964. [PMID: 37505889 PMCID: PMC10437129 DOI: 10.2196/42964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chondrocytes are the primary cells responsible for maintaining cartilage integrity and function. Their role in cartilage homeostasis and response to inflammation is crucial for understanding the progression and potential therapeutic interventions for various cartilage-related disorders. Developing an accessible and cost-effective model to generate viable chondrocytes and to assess their response to different bioactive compounds can significantly advance our knowledge of cartilage biology and contribute to the discovery of novel therapeutic approaches. OBJECTIVE We developed a novel, streamlined protocol for generating chondrocytes from bone marrow-derived mesenchymal stem cells (BMSCs) in a 3D culture system that offers significant implications for the study of cartilage biology and the discovery of potential therapeutic interventions for cartilage-related and associated disorders. METHODS We developed a streamlined protocol for generating chondrocytes from BMSCs in a 3D culture system using an "in-tube" culture approach. This simple pellet-based 3D culture system allows for cell aggregation and spheroid formation, facilitating cell-cell and cell-extracellular matrix interactions that better mimic the in vivo cellular environment compared with 2D monolayer cultures. A proinflammatory chondrocyte model was created by treating the chondrocytes with lipopolysaccharide and was subsequently used to evaluate the anti-inflammatory effects of vitamin D, curcumin, and resveratrol. RESULTS The established protocol successfully generated a large quantity of viable chondrocytes, characterized by alcian blue and toluidine blue staining, and demonstrated versatility in assessing the anti-inflammatory effects of various bioactive compounds. The chondrocytes exhibited reduced inflammation, as evidenced by the decreased tumor necrosis factor-α levels, in response to vitamin D, curcumin, and resveratrol treatment. CONCLUSIONS Our novel protocol offers an accessible and cost-effective approach for generating chondrocytes from BMSCs and for evaluating potential therapeutic leads in the context of inflammatory chondrocyte-related diseases. Although our approach has several advantages, further investigation is required to address its limitations, such as the potential differences between chondrocytes generated using our protocol and those derived from other established methods, and to refine the model for broader applicability and clinical translation.
Collapse
Affiliation(s)
- Rajashree Patnaik
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shirin Jannati
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- Department of Molecular Biology, Lund University, Lund, Lund, Sweden
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nerissa Naidoo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Viet-Nhi NK, Chen YC, Dang LH, Tseng H, Hung SH. Degassing a Decellularized Scaffold Enhances Wound Healing and Reduces Fibrosis during Tracheal Defect Reconstruction: A Preliminary Animal Study. J Funct Biomater 2023; 14:jfb14030147. [PMID: 36976071 PMCID: PMC10051568 DOI: 10.3390/jfb14030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Few efforts have been made regarding the optimization of porcine small intestinal submucosa (SIS) to improve its biocompatibility. This study aims to evaluate the effect of SIS degassing on the promotion of cell attachment and wound healing. The degassed SIS was evaluated in vitro and in vivo, compared with the nondegassed SIS control. In the cell sheet reattachment model, the reattached cell sheet coverage was significantly higher in the degassed SIS group than in the nondegassed group. Cell sheet viability was also significantly higher in the SIS group than in the control group. In vivo studies showed that the tracheal defect repaired by the degassed SIS patch showed enhanced healing and reductions in fibrosis and luminal stenosis compared to the nondegassed SIS control group, with the thickness of the transplanted grafts in the degassed SIS group significantly lower than those in the control group (346.82 ± 28.02 µm vs. 771.29 ± 20.41 µm, p < 0.05). Degassing the SIS mesh significantly promoted cell sheet attachment and wound healing by reducing luminal fibrosis and stenosis compared to the nondegassed control SIS. The results suggest that the degassing processing might be a simple and effective way to improve the biocompatibility of SIS.
Collapse
Affiliation(s)
- Nguyen-Kieu Viet-Nhi
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Chun Chen
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - How Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Han Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Satisfactory clinical outcomes with autologous matrix-induced chondrogenesis in the treatment of grade IV chondral injuries of the knee. J ISAKOS 2022; 8:86-93. [PMID: 36435431 DOI: 10.1016/j.jisako.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The research aims to evaluate short- and medium-term outcomes of patients treated using autologous matrix-induced chondrogenesis (AMIC) with a hyaluronic acid scaffold (Hyalofast, Anika Therapeutics, MA, USA) in grade IV chondral lesions according to the Outerbridge classification in the knee. METHODS This is a multicentre, non-randomized, retrospective study conducted between 2017 and 2022. To determine the clinical outcome of the patients, the follow-up was done with the subjective International Knee Documentation Committee (IKDC) score, pre-surgery, and with a follow-up at 12, 24, and 32 months. RESULTS Fifty patients (28 female) with a mean age of 45.9 ± 12.7 years were recruited. The mean size of the lesion was 3.5 cm2, and the injuries located in the patella (30%) and trochlear groove (24%) were the most frequent. The total IKDC clinical score significantly increased from baseline to the 32 months of follow-up with a mean difference of 36.4 (95% CI, 29.1-43.7, p < 0.001). Besides, there was a statistically significant improvement in all categories of the IKDC (symptoms, sports activities, function, and activity of daily living) compared between pre-surgery and 24 and 32 months of follow-up. The patients younger than 45 years presented better clinical outcomes than older ones with a difference between medians of 10.40 (95% CI, 1.10-11.50, p = 0.0247), and a negative correlation was found between the 32-month IKDC score and the age. In addition, no statistically significant difference was found when comparing the last results of the IKDC between patients with and without associated surgical procedures or between patients with single and several lesions, neither nor between men and women. The level of satisfaction with the procedure of all the patients, on a score of 1-10, was on average 8 ± 1.5. CONCLUSION Results of this study indicate that patients who underwent the AMIC procedure with hyaluronic acid scaffold for the treatment of grade IV chondral lesions in the knee presented satisfactory results throughout the follow-up. LEVEL OF EVIDENCE Level IV.
Collapse
|
5
|
Zellfreie Biomaterialien zur Knorpelregeneration. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Dilley JE, Everhart JS, Klitzman RG. Hyaluronic acid as an adjunct to microfracture in the treatment of osteochondral lesions of the talus: a systematic review of randomized controlled trials. BMC Musculoskelet Disord 2022; 23:313. [PMID: 35366851 PMCID: PMC8976295 DOI: 10.1186/s12891-022-05236-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Osteochondral lesions of the talus (OLT) are common after ankle trauma. Studies have shown that bioactive substances, such as hyaluronic acid (HA), alone, or in combination, with surgical treatment could improve cartilage regeneration and repair, but the effect of HA on patient reported outcomes is unclear. METHODS Literature searches were performed across four databases (PubMed, SPORTDiscus, Scopus, and The Cochrane Library) for randomized controlled trials in which at least one treatment arm involved use of HA as an adjunct to microfracture to treat patients with OLT. Primary outcomes included the American Orthopaedic Foot and Ankle Society scores (AOFAS), and the Visual Analog Scale (VAS) for pain. The level of evidence and methodological quality were evaluated using the Modified Coleman Methodology Score (MCMS). RESULTS Three randomized studies were eligible for review with a total of 132 patients (35, 40, 57 patients, respectively) and follow-up ranged from 10.5 to 25 months. Utilization of HA at the time of microfracture resulted in greater improvement in AOFAS scores compared to microfracture alone. The pooled effect size was moderate (Standardized Mean Difference [SMD] 0.45, 95% Confidence Interval [CI] 0.06, 0.84; P = .02) and between-study heterogeneity was low (I-squared = 0%). Utilization of HA during microfracture also led to greater improvement in VAS-pain scores compared to microfracture alone. The pooled effect size was very large (SMD -3.86, 95% CI -4.75, - 2.97; P < .001) and heterogeneity was moderate (I-squared = 69%). CONCLUSION Hyaluronic acid injection as an adjunct to arthroscopic MF in OLT provides clinically important improvements in function and pain at short-term follow-up compared to MF alone. Future longer-term follow-up studies are warranted to investigate the durability of MF with HA for treatment of OLT.
Collapse
Affiliation(s)
- Julian E Dilley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joshua S Everhart
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert G Klitzman
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
7
|
Irem Demir A, Pulatkan A, Ucan V, Yilmaz B, Tahmasebifar A, Tok OE, Tuncay I, Elmali N, Ozturk BY, Uzer G. Comparison of 3 Cell-Free Matrix Scaffolds Used to Treat Osteochondral Lesions in a Rabbit Model. Am J Sports Med 2022; 50:1399-1408. [PMID: 35354059 DOI: 10.1177/03635465221074292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various cell-free scaffolds are already in use for the treatment of osteochondral defects (OCDs); however, a gold standard material has not yet been defined. PURPOSE This study compared the macroscopic, histological, and scanning electron microscopy (SEM) characteristics of Chondro-Gide (CG), MaioRegen (MA), and poly-d,l-lactide-co-caprolactone (PLCL) cell-free scaffolds enhanced with small-diameter microfractures (SDMs) for OCDs in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS In total, 54 knees from 27 rabbits were used in this study. Three rabbits were sacrificed at the beginning of the study to form an intact cartilage control group (group IC). An OCD model was created at the center of the trochlea, and SDMs were generated in 24 rabbits. Rabbits with OCDs were divided into 4 groups (n = 12 knees per group) according to the cell-free scaffold applied: CG (group CG), MA (group MA), PLCL (group PLCL), and a control group (group SDM). Half of the rabbits were sacrificed at 1 month after treatment, while the other half were sacrificed at 3 months after treatment. Healed cartilage was evaluated macroscopically (using International Cartilage Regeneration & Joint Preservation Society [ICRS] classification criteria) and histopathologically (using modified O'Driscoll scores and collagen staining). Additionally, cell-free scaffold morphologies were compared using SEM analysis. RESULTS ICRS and modified O'Driscoll classification and staining with collagen type 1 and type 2 demonstrated significant differences among groups at both 1 and 3 months after treatment (P < .05). The histological characteristics of the group IC samples were superior to those of all other groups, except group PLCL, at 3 months after treatment (P < .05). In addition, the histological properties of group PLCL samples were superior to those of group SDM samples at both 1 and 3 months after treatment in terms of the modified O'Driscoll scores and type 1 collagen staining (P < .05). Concerning type 2 collagen staining intensity, the groups were ranked from highest to lowest at 3 months after treatment as follows: group PLCL (30.3 ± 2.6) > group MA (26.6 ± 1.2) > group CG (23.3 ± 2.3) > group SDM (18.9 ± 0.9). CONCLUSION OCDs treated with enhanced SDM using cell-free PLCL scaffolds had superior histopathological and microenvironmental properties, more hyaline cartilage, and more type 2 collagen compared with those treated using CG or MA scaffolds. CLINICAL RELEVANCE OCDs treated with PLCL cell-free scaffolds may have superior histopathological properties and contain more type 2 collagen than do OCDs treated with CG or MA cell-free scaffolds.
Collapse
Affiliation(s)
- Ahder Irem Demir
- Department of Orthopaedics and Traumatology, Istanbul Beykoz State Hospital, Istanbul, Turkey
| | - Anil Pulatkan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Vahdet Ucan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Bengi Yilmaz
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Olgu Enis Tok
- Department of Histology and Embryology, Medipol University Medical Faculty Regenerative and Restorative Medicine Research Center, Istanbul, Turkey
| | - Ibrahim Tuncay
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nurzat Elmali
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Gokcer Uzer
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
8
|
Ow ZGW, Cheang HLX, Koh JH, Koh JZE, Lim KKL, Wang D, Minas T, Carey JL, Lin HA, Wong KL. Does the Choice of Acellular Scaffold and Augmentation With Bone Marrow Aspirate Concentrate Affect Short-term Outcomes in Cartilage Repair? A Systematic Review and Meta-analysis. Am J Sports Med 2022; 51:1622-1633. [PMID: 35225004 DOI: 10.1177/03635465211069565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Matrix-induced chondrogenesis (MIC) is a promising treatment option for critical-size cartilage lesions of the knee; however, there exists substantial heterogeneity in the choice of acellular scaffold matrix for MIC cartilage repairs. HYPOTHESIS The choice of acellular matrix will not affect patient outcomes after MIC cartilage repair procedures, and the addition of concentrated bone marrow aspirate (cBMA) will improve short-term patient outcomes regardless of matrix choice. STUDY DESIGN Meta-analysis; Level of evidence, 4. METHODS Studies were stratified by matrix type: multilayered, single layered, and gel based. Continuous outcomes were analyzed with pairwise meta-analysis using the inverse variance model with random effects applied. Binary outcomes were analyzed as pooled proportions in a single-arm fashion; after which, reconstruction of relative risks (RRs) with confidence intervals was performed using the Katz logarithmic method. RESULTS A total of 876 patients were included: 469 received multilayered bioscaffolds; 238, gel-based scaffolds; and 169, single-layered scaffolds. The mean age of patients was 36.2 years (95% CI, 33.9 to 38.4), while the mean lesion size was 3.91 cm2 (95% CI, 3.40 to 4.42). The weighted mean follow-up was 23.8 months (95% CI, 20.1 to 27.6). Multilayered bioscaffolds were most effective at improving visual analog scale scores (P = .03; weighted mean difference [WMD], -4.44 [95% CI, -4.83 to -4.06]; P < .001). There were significantly lower risks of incomplete defect filling for gel-based scaffolds when compared with multilayered scaffolds (RR, 0.78 [95% CI, 0.69 to 0.88]; P < .001) and single-layered scaffolds (RR, 0.58 [95% CI, 0.41 to 0.81]; P = .001). Augmentation with cBMA further improved clinical scores across all scaffolds, with significant improvements in Tegner score (P = .02), while decreasing incomplete defect filling rates as well. There was significantly greater improvement in visual analog scale scores (P = .01) for single-layered scaffolds with cBMA augmentation (WMD, -4.88 [95% CI, -5.38 to -4.37]; P < .001) as compared with single-layered scaffolds without cBMA augmentation (WMD, -4.08 [95% CI, -4.46 to -3.71]; P < .001). All significant improvements were below their respective minimum clinically important differences. CONCLUSION While cartilage repair with acellular scaffolds provides significant improvements in pain and function for patients, there is insufficient clinical evidence to suggest which scaffold material is the most superior in influencing such improvements. The enhancement of cartilage repair procedures with cBMA may provide further functional improvements and improve defect filling; however, more long-term evidence is required to evaluate the effects.
Collapse
Affiliation(s)
| | | | - Jin Hean Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua Zhi En Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Dean Wang
- Department of Orthopaedic Surgery, University of California, Irvine, California, USA
| | - Tom Minas
- Cartilage Repair Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James L Carey
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heng An Lin
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore
| | - Keng Lin Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore
- Musculoskeletal Sciences Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
9
|
Calvo R, Figueroa D, Figueroa F, Bravo J, Contreras M, Zilleruelo N. Treatment of Patellofemoral Chondral Lesions Using Microfractures Associated with a Chitosan Scaffold: Mid-Term Clinical and Radiological Results. Cartilage 2021; 13:1258S-1264S. [PMID: 33906468 PMCID: PMC8808950 DOI: 10.1177/19476035211011506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the clinical and radiological results of patellofemoral osteochondral lesions treated with microfractures associated with a chitosan scaffold. DESIGN A retrospective observational analytical study was performed. Fifteen patients with full-thickness patellofemoral osteochondral lesions were included. Quantity and quality of the reparation cartilage was assessed with the MOCART 2.0 score on a postoperative magnetic resonance imaging (MRI), and clinical outcomes were evaluated with pre- and postoperative Kujala score tests. Shapiro-Wilk test for normality was applied as well as Wilcoxon's signed rank test and Kruskal-Wallis H test for clinical scores within subjects and patella versus trochlea subgroups comparisons. Analysis of variance test was used for imaging subgroups comparison, with P < 0.05 defined as statistical significance. RESULTS Mean follow-up was 33.36 months (range 24-60 months). Postoperative Kujala scores improved an average of 19 points compared with the preoperative state (SE = 17.6; P < 0.001). No statistical difference was found through the clinical location assessment (P = 0.756), as well as the cartilage imaging assessment (P = 0.756). The mean MOCART 2.0 scale was 67.67 (range 50-85). CONCLUSIONS Treating full-thickness patellofemoral osteochondral lesions with microfractures associated with a chitosan scaffold proved to be effective regarding defect filling and symptomatic improvement.
Collapse
Affiliation(s)
- Rafael Calvo
- Clinica Alemana–Universidad del
Desarrollo, Santiago, Chile
| | - David Figueroa
- Clinica Alemana–Universidad del
Desarrollo, Santiago, Chile
| | - Francisco Figueroa
- Clinica Alemana–Universidad del
Desarrollo, Santiago, Chile,Hospital Sotero del Rio, Santiago,
Chile,Francisco Figueroa, Clinica
Alemana–Universidad del Desarrollo, Vitacura 5951, Santiago, 22222222, Chile.
| | - Jose Bravo
- Clinica Alemana–Universidad del
Desarrollo, Santiago, Chile
| | | | | |
Collapse
|
10
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Ricci M, Tradati D, Maione A, Uboldi FM, Usellini E, Berruto M. Cell-free osteochondral scaffolds provide a substantial clinical benefit in the treatment of osteochondral defects at a minimum follow-up of 5 years. J Exp Orthop 2021; 8:62. [PMID: 34398364 PMCID: PMC8368912 DOI: 10.1186/s40634-021-00381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The treatment of osteochondral lesions is challenging and no consensus has been established about the best option for restoring both cartilage and subchondral bone. Multilayer collagen-hydroxyapatite scaffolds have shown promising clinical results, but the outcome at a follow-up longer than 5 years still has to be proved. The aim was to evaluate the clinical outcome of patients with a knee isolated osteochondral lesion treated with a biomimetic three-layered scaffold at a minimum 5 years of follow-up. Methods Twenty-nine patients (23 males and 6 females, mean age 31.5 ± 11.4 years) were evaluated retrospectively before surgery, at 1 and 2 years and at last follow-up (FU). Visual Analog Scale (VAS) for pain, International Knee Documentation Committee (IKDC) Subjective Score, Tegner-Lysholm Knee Scoring Scale and Tegner Activity Level Scale were collected. Mean FU was 7.8 ± 2.0 years (min 5.1 - max 11.3). The etiology of the defect was Osteochondritis Dissecans or osteonecrosis (17 vs 12 cases). Results At 12 months FU the IKDC score improved from 51.1 ± 21.7 to 80.1 ± 17.9 (p < 0.01), Tegner Lysholm Score from 59.9 ± 17.3 to 92.5 ± 9.0 (p < 0.01), VAS from 6.1 ± 2.1 to 1.7 ± 2.3 (p < 0.01) and Tegner Activity Level Scale from 1.6 ± 0.5 to 4.9 ± 1.7 (p < 0.01). The results remained stable at 24 months, while at last FU a statistically significant decrease in IKDC, Tegner Lysholm and Tegner Activity Scale was recorded, though not clinically relevant. Patients under 35 achieved statistically better outcomes. Conclusions The use of a cell-free collagen-hydroxyapatite osteochondral scaffold provides substantial clinical benefits in the treatment of knee osteochondral lesions at a minimum follow-up of 5 years, especially in patients younger than 35 years. Level of evidence Level IV.
Collapse
Affiliation(s)
- Martina Ricci
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy.
| | - Daniele Tradati
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Alessio Maione
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Francesco Mattia Uboldi
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Eva Usellini
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Massimo Berruto
- UOS Chirurgia Articolare del Ginocchio, I Clinica Ortopedica, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| |
Collapse
|
12
|
Andriolo L, Reale D, Di Martino A, Boffa A, Zaffagnini S, Filardo G. Cell-Free Scaffolds in Cartilage Knee Surgery: A Systematic Review and Meta-Analysis of Clinical Evidence. Cartilage 2021; 12:277-292. [PMID: 31166117 PMCID: PMC8236653 DOI: 10.1177/1947603519852406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate current evidence and results of cell-free scaffold techniques for knee chondral lesions. DESIGN A systematic review was conducted on 3 medical electronic databases according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, and the methodological quality was assessed with a modified Coleman Methodology Score. A meta-analysis was performed on the articles reporting results for visual analogue scale (VAS), Lysholm, and International Knee Documentation Committee (IKDC) scores. In order to investigate the clinical results improvement over time of cell-free cartilage scaffold implantation, all scores were reported and analyzed as improvement from basal scores at 1, 2, and ≥3 years' follow-up. RESULTS A total of 23 studies involving 521 patients were included in the qualitative data synthesis. The Coleman score showed an overall poor study quality with the majority of studies reporting results at short-/mid-term follow-up. Sixteen studies were included in the meta-analysis, showing a significant improvement from basal score at 1, 2, and ≥3 years' follow-up. The improvement reached at 1 year remained stable up to the last follow-up for all scores. CONCLUSIONS The current literature suggests that cell-free scaffolds may provide good clinical short-/mid-term results; however, the low evidence of the published studies and their short mean follow-up demand further evidence before more definitive conclusions can be drawn on their real potential over time and on their advantages and disadvantages compared to the cell-based strategies for the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Luca Andriolo
- Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Reale
- Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy,Angelo Boffa, Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano,1/10, Bologna, 40136, Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
13
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
15
|
Camurcu Y, Ucpunar H, Yapici F, Karakose R, Ozcan S, Cobden A, Duman S, Sofu H. Clinical and Magnetic Resonance Imaging Outcomes of Microfracture Plus Chitosan/Blood Implant vs Microfracture for Osteochondral Lesions of the Talus. Foot Ankle Int 2020; 41:1368-1375. [PMID: 32757833 DOI: 10.1177/1071100720942173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to compare the clinical and magnetic resonance imaging (MRI) outcomes of arthroscopic microfracture (MF) plus chitosan-glycerol phosphate/blood implant and MF alone for the treatment of the osteochondral lesions of the talus (OCLTs). METHODS Patients who underwent either MF plus chitosan (group 1, n = 32) or MF alone (group 2, n = 31) between 2015 and 2019 in 2 separate time periods were retrospectively analyzed. Visual analog scale (VAS) score and American Orthopaedic Foot & Ankle Society (AOFAS) score were used for clinical evaluation. The magnetic resonance observation of cartilage repair tissue (MOCART) system was used for MRI evaluation. The mean follow-up time was 32 ± 13 months (range, 12-61 months). RESULTS Postoperatively, we detected significant improvements in both groups in terms of VAS and AOFAS scores. However, we observed no statistically significant difference between groups in terms of clinical scores, except the mean VAS function score, which was significantly higher in group 1 (P = .022). According to MOCART scale, complete repair with the filling of the chondral defect and intactness of the surface of the repair tissue were more common in group 1. However, these parameters did not significantly differ between groups (P = .257 and .242, respectively). CONCLUSION Arthroscopic MF plus chitosan glycerol phosphate/blood implant did not result in better clinical and MRI outcomes compared with MF alone in the treatment of OCLTs. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Yalkin Camurcu
- Department of Orthopaedics and Traumatology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Hanifi Ucpunar
- Department of Orthopaedics and Traumatology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Furkan Yapici
- Department of Orthopaedics and Traumatology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Resit Karakose
- Department of Orthopaedics and Traumatology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Seckin Ozcan
- Department of Orthopaedics and Traumatology, Yalova State Hospital, Yalova, Turkey
| | - Adem Cobden
- Department of Orthopaedics and Traumatology, Kayseri City Hospital, Kayseri, Turkey
| | - Serda Duman
- Department of Orthopaedics and Traumatology, Selahaddin Eyyubi State Hospital, Diyarbakir, Turkey
| | - Hakan Sofu
- Department of Orthopaedics and Traumatology, Altinbas University Bahcelievler Medicalpark Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
da Cunha CB, Andrade R, Veloso TR, Learmonth DA, Espregueira-Mendes J, Sousa RA. Enhanced microfracture using acellular scaffolds improves results after treatment of symptomatic focal grade III/IV knee cartilage lesions but current clinical evidence does not allow unequivocal recommendation. Knee Surg Sports Traumatol Arthrosc 2020; 28:3245-3257. [PMID: 31894366 DOI: 10.1007/s00167-019-05832-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To systematically analyse post-operative outcomes following enhanced microfracture procedures in focal cartilage injuries of the knee. METHODS Database searches were conducted in PubMed, EMBASE and Cochrane Library databases up to 30 November 2018, for clinical studies in humans that assessed surgical outcomes of enhanced microfracture procedures in focal cartilage injuries of the knee. The clinical, functional and imaging outcomes were assessed and summarized. The MINORS scale was used to assess the methodological quality of the studies included. RESULTS Ten studies were included comprising a total of 331 patients (mean age of 37.0 ± 5.5 years, body mass 25.2 ± 1.7 kg m2, 56% male and 42% left knee), 278 femoral condyle chondral defects (147 medial, 35 lateral and 78 undefined) and 43 chondral defects distributed by the tibial plateau, patella and femoral trochlea. The chondral defects were mostly Outerbridge grade III or IV and the mean defect size was 3.2 ± 0.6 cm2. Studies consistently demonstrated significant improvement in the patient-reported outcome measures from baseline to final follow-up. Overall, imaging outcomes showed inconsistent results. Treatment-related adverse events were poorly reported. CONCLUSION Enhanced microfracture techniques significantly result in improved patient-reported outcome measures over the MCID, but provide inconsistent imaging results. Current clinical evidence does not allow for unequivocal recommendation of enhanced microfracture to treat symptomatic focal grade III/IV knee cartilage lesions. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Cristiana Branco da Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal
| | - Tiago Rafael Veloso
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - David A Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| |
Collapse
|
17
|
Chou A, Lie D. A Technique Using a Low-Cost, Accessible Cannula to Aid Scaffold Passage in Dry Arthroscopic Cartilage Repair in the Knee. Arthrosc Tech 2020; 9:e775-e782. [PMID: 32577351 PMCID: PMC7301273 DOI: 10.1016/j.eats.2020.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/05/2020] [Indexed: 02/03/2023] Open
Abstract
Although autologous matrix-induced chondrogenesis has grown increasingly popular, it can be technically challenging to place the scaffold within the knee efficiently without extending the arthroscopic incisions. To facilitate arthroscopic placement of the matrix into the knee, we developed a technique that involves fashioning a cannula from a standard 5-mL syringe. This technique enables surgeons to conveniently and efficiently place the matrix through the standard arthroscopic ports at minimal cost.
Collapse
Affiliation(s)
- Andrew Chou
- Address correspondence to Department of Orthopaedic Surgery, the Academia, 20 College Road, Singapore 169856.
| | | |
Collapse
|
18
|
Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model. Knee Surg Sports Traumatol Arthrosc 2019; 27:1953-1964. [PMID: 30387000 DOI: 10.1007/s00167-018-5263-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteochondral implants are currently adopted for the treatment of symptomatic full-thickness chondral and osteochondral defects. Agili-C™ is a cell-free aragonite-based scaffold which aims to reproduce the original structure and function of the articular joint while directing the growth and regeneration of both cartilage and its underlying subchondral bone. The goal of the present study was to investigate the ex vivo mechanisms of action (MOA) of the Agili-C™ implant in the repair of full-thickness cartilage defects. In particular, we tested whether Agili-C™ implant has the potential to stimulate cartilage ingrowth through chondrocytes migration into the 3D interconnected porous structure of the scaffold, along with maintaining their viability and phenotype and the deposition of hyaline cartilage matrix. METHODS Articular cartilage samples were collected through the Gift of Hope Organ and Tissue Donor Network (Itasca, IL) within 24 h from death. For this study, cartilage from a total of 14 donors was used. To model a chondral defect, donut-shaped cartilage explants were prepared from each tissue specimen. The chondral phase of the Agili-C™ implant was placed inside the tissue in full contact and press fit manner. Cartilage explants with the Agili-C™ implant inside were cultured for 60 days. As a control, the same donut-shaped cartilage explants were cultured without Agili-C™, under the same culture conditions. RESULTS Using fresh human cadaveric articular cartilage tissue in a 60-day culture, it was demonstrated that chondrocytes were able to migrate into the Agili-C™ scaffold and contribute to the deposition of the extracellular matrix (ECM) rich in collagen type II and aggrecan, and lacking collagen type I. Additionally, we were able to show the formation of a layer populated by progenitor-like cells on the articular surface of the implant. CONCLUSIONS The analysis of samples taken from knee and ankle joints of human donors with a wide age range and both genders supports the potential of Agili-C™ scaffold to stimulate cartilage regeneration and repair. Based on these results, the present scaffold can be used in the clinical practice as a one-step procedure to treat full-thickness chondral defects.
Collapse
|
19
|
Holt K, Sorhaindo M, Coady C, Wong IHB. Arthroscopic Treatment of Medial Femoral Knee Osteochondral Defect Using Subchondroplasty and Chitosan-Based Scaffold. Arthrosc Tech 2019; 8:e413-e418. [PMID: 31110940 PMCID: PMC6510704 DOI: 10.1016/j.eats.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/29/2018] [Indexed: 02/03/2023] Open
Abstract
Osteochondral defects of the knee are highly common, cause significant pain, and reduce function. Standard articular cartilage repair treatments include microfracture alone or in conjunction with subchondroplasty or CarGel (chitosan-based scaffold) application (Piramal Life Sciences). Combining such cartilage regenerative techniques with microfracture yields better long-term outcomes than microfracture alone. The purpose of this Technical Note was to describe the surgical technique of applying CarGel after subchondroplasty and microfracture to repair a medial femoral knee osteochondral defect.
Collapse
Affiliation(s)
| | | | | | - Ivan Ho-Bun Wong
- Dalhousie University, Halifax, Canada,Address correspondence to Ivan Ho-Bun Wong, M.D., F.R.C.S.C., Dip. Sports Medicine, M.A.C.M., Dalhousie University, 5955 Veterans' Memorial Lane, Halifax, NS, B3H 2E1, Canada.
| |
Collapse
|
20
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|