Wenner L, Pauli U, Summermatter K, Gantenbein H, Vidondo B, Posthaus H. Aerosol Generation During Bone-Sawing Procedures in Veterinary Autopsies.
Vet Pathol 2017;
54:425-436. [PMID:
28113035 DOI:
10.1177/0300985816688744]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone-sawing procedures are routinely performed during veterinary and human autopsies and represent an important source for infectious aerosols. Here we investigate the generation of aerosols during bone-sawing procedures using 5 different saws regularly used in veterinary and human pathology. In particular, the electrical bone band saw produced vast amounts of aerosolized particles less than 5 µm in diameter, which spread rapidly throughout the entire autopsy hall, leading to an exposure of all personnel. Other sawing devices tested were a diamond-coated cut grinder, an oscillating saw, a reciprocating saw, and a hand bone saw. Although these saws, especially the handsaw, generated fewer aerosolized particles than the band saw, the level of exposure of the saw operator would still be of concern in cases where infectious material would require sawing. Contamination of the entire autopsy area was successfully prevented by the construction of a separately ventilated sawing cabin inside the existing autopsy room. Saw operators in this cabin, however, were exposed to even higher aerosol concentrations. Protection of saw operators was achieved by using a powered air-purifying respirator. In conclusion, our results demonstrate that all bone-sawing procedures applied in veterinary and human pathology can generate aerosols that are of concern for the health of autopsy personnel. To reduce the risk of aerosol infections from bone-sawing procedures, efficient and properly designed ventilation systems to limit the spread of aerosols and appropriate personal protective equipment against aerosols for exposed personnel should be implemented.
Collapse