1
|
Pulse-Echo Measurements of Bone Tissues. Techniques and Clinical Results at the Spine and Femur. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:145-162. [DOI: 10.1007/978-3-030-91979-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Clinical Devices for Bone Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:35-53. [DOI: 10.1007/978-3-030-91979-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Viano AM, Ankersen JP, Hoffmeister BK, Huang J, Fairbanks LC. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3309-3325. [PMID: 34138705 DOI: 10.1109/tuffc.2021.3090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasonic backscatter techniques may offer a useful approach for detecting changes in bone caused by osteoporosis. The goal of this study was to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone affect three ultrasonic backscatter parameters that have been identified as potentially useful for ultrasonic bone assessment purposes: the apparent integrated backscatter (AIB), the frequency slope of apparent backscatter (FSAB), and the frequency intercept of apparent backscatter (FIAB). Ultrasonic measurements were performed with a 3.5-MHz broadband transducer on 54 specimens of human cancellous bone prepared from the proximal femur. Microstructural parameters and BMD were measured using X-ray microcomputed tomography (micro-CT). Relationships between AIB, FSAB, FIAB, and the micro-CT parameters were investigated using univariate and multivariate statistical analysis techniques. Moderate-to-strong univariate correlations were observed between the backscatter parameters and microstructure and BMD in many cases. The partial correlation analysis indicated that the backscatter parameters are dependent on microstructure independently of BMD in some cases. Multiple stepwise linear regression analysis used to generate multivariate models found that microstructure was a significant predictor of the backscatter parameters in most cases.
Collapse
|
4
|
Feng T, Zhu Y, Morris R, kozloff KM, Wang X. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone in vivo. PHOTOACOUSTICS 2021; 23:100273. [PMID: 34745881 PMCID: PMC8552339 DOI: 10.1016/j.pacs.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and in vivo experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in vivo in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.e. transmission mode). Quantitative power spectral analyses of the calcaneus bone PA signals were also conducted, demonstrating that the microarchitectural changes in calcaneus bone due to osteoporosis can be detected, as reflected by enhanced high frequency components in detected PA bone signal. Further statistical analysis of the experimental results from 10 osteoporosis patients and 10 healthy volunteers showed that the weighted frequency as a quantified PA spectral parameter can differentiate the two subject groups with statistical significance.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
5
|
A Combined Ultrasonic Backscatter Parameter for Bone Status Evaluation in Neonates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3187268. [PMID: 32411279 PMCID: PMC7211244 DOI: 10.1155/2020/3187268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Metabolic bone disease (MBD) is one of the major complications of prematurity. Ultrasonic backscatter technique has the potential to be a portable and noninvasive method for early diagnosis of MBD. This study firstly applied CAS to neonates, which was defined as a linear combination of the apparent integrated backscatter coefficient (AIB) and spectral centroid shift (SCS). The objective was to evaluate the feasibility of ultrasonic backscatter technique for assessing neonatal bone health using AIB, SCS, and CAS. Ultrasonic backscatter measurements at 3.5 MHz, 5.0 MHz, and 7.5 MHz were performed on a total of 505 newborns within 48 hours after birth. The values of backscatter parameters were calculated and compared among gestational age groups. Correlations between backscatter parameters, gestational age, anthropometric indices, and biochemical markers were analyzed. The optimal predicting models for CAS were determined. The results showed term infants had lower SCS and higher AIB and CAS than preterm infants. Gestational age and anthropometric indices were negatively correlated with SCS (|r| = 0.45 – 0.57, P < 0.001), and positively correlated with AIB (|r| = 0.36 – 0.60, P < 0.001) and CAS (|r| = 0.56 – 0.69, P < 0.001). Biochemical markers yielded weak or nonsignificant correlations with backscatter parameters. CAS had relatively stronger correlations with the neonatal variables than AIB and SCS. At 3.5 MHz and 5.0 MHz, only gestational age (P < 0.001) independently contributed to the measurements of CAS, and could explain up to 40.5% – 44.3% of CAS variation. At 7.5 MHz, the combination of gestational age (P < 0.001), head circumference (P = 0.002), and serum calcium (P = 0.037) explained up to 40.3% of CAS variation. This study suggested ultrasonic backscatter technique was feasible to evaluate neonatal bone status. CAS was a promising parameter to provide more information about bone health than AIB or SCS alone.
Collapse
|
6
|
Du H, Yousefian O, Horn T, Muller M. Evaluation of Structural Anisotropy in a Porous Titanium Medium Mimicking Trabecular Bone Structure Using Mode-Converted Ultrasonic Scattering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1017-1024. [PMID: 31940527 PMCID: PMC7301879 DOI: 10.1109/tuffc.2019.2963162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mode-converted (longitudinal to transverse, L-T) ultrasonic scattering method was utilized to characterize the structural anisotropy of a phantom mimicking the structural properties of trabecular bone. The sample was fabricated using metal additive manufacturing from high-resolution computed tomography (CT) images of a sample of trabecular horse bone with strong anisotropy. Two focused transducers were used to perform the L-T ultrasonic measurements. A normal incidence transducer was used to transmit longitudinal ultrasonic waves into the sample, while the scattered transverse signals were received by an oblique incidence transducer. At multiple locations on the sample, four L-T measurements were performed by collecting ultrasonic scattering from four directions. The amplitude of the root mean square (rms) of the collected ultrasonic scattering signals was calculated for each L-T measurement. The ratios of rms amplitudes for L-T measurements in different directions were calculated to characterize the anisotropy of sample. The results show that the amplitude of L-T converted scattering is highly dependent on the direction of microstructural anisotropy. A strong anisotropy of the microstructure was observed, which coincides with simulation results previously published on the same structure as well as with the anisotropy estimated from the CT images. These results suggest the potential of mode-converted ultrasonic scattering methods to assess the anisotropy of materials with porous, complex structures, including trabecular bone.
Collapse
Affiliation(s)
- Hualong Du
- Applied Research Associates, Inc. Littleton, CO, USA
| | - Omid Yousefian
- Center for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, NC, USA
| | - Timothy Horn
- Industrial Engineering, North Carolina State University, Raleigh, NC, USA
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Marie Muller
- Center for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
8
|
Liu C, Li B, Li Y, Mao W, Chen C, Zhang R, Ta D. Ultrasonic Backscatter Difference Measurement of Bone Health in Preterm and Term Newborns. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:305-314. [PMID: 31791554 DOI: 10.1016/j.ultrasmedbio.2019.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Metabolic bone disease of prematurity remains a significant problem for preterm infants. Quantitative ultrasound (QUS) has potential as a non-invasive tool for assessing bone health of newborns. The aim of this study was to assess bone health in preterm and term newborns using ultrasonic backscatter difference measurement. This study analyzed a total of 493 neonates, including 239 full-term infants (gestational age [GA] >37 wk), 201 preterm I infants (GA: 32-37 wk) and 53 extreme preterm II infants (GA <32 wk). Ultrasonic backscatter measurements were performed on the calcaneus of infants at birth, and the normalized mean of the backscatter difference spectrum (nMBD) was calculated as an ultrasonic index of neonatal bone status. Simple and multiple linear regressions were performed to determine the association of ultrasonic nMBD with GA, anthropometric characteristics and biochemical markers. Statistically significant differences in GA, anthropometric characteristics (birth weight, birth length [BL], birth head circumference and body mass index [BMI]) and biochemical markers (alkaline phosphatase, serum calcium and serum phosphate) were observed among preterm and term infants. The nMBD for term infants (median = 3.72 dB/μs, interquartile range [IR] = 1.95 dB/μs) was significantly higher than that for preterm I infants (median = 1.95 dB/μs, IR = 3.12 dB/μs), which was, in turn, significantly higher than that for preterm II infants (median = 0.19 dB/μs, IR = 3.50 dB/μs). The nMBD yielded moderate correlations (ρ = 0.57-0.62, p < 0.001) with GA and anthropometric characteristics and weak correlations (|ρ| = 0.08-0.21, p < 0.001 or not significant) with biochemical markers. Multivariate regressions revealed that only BL (p = 0.002) and BMI (p = 0.032) yielded significantly independent contributions to the nMBD measurement, and combinations of BL and BMI could explain up to 42% of the variation of nMBD in newborn infants. This study found that ultrasonic backscatter difference measurement might be helpful in bone health evaluation in preterm and term newborns. The utility of ultrasonic backscatter measurement in diagnosis of metabolic bone disease in infants should be investigated further.
Collapse
Affiliation(s)
- Chengcheng Liu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Boyi Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Weiying Mao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; Academy for Engineering & Technology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Di Paola M, Gatti D, Viapiana O, Cianferotti L, Cavalli L, Caffarelli C, Conversano F, Quarta E, Pisani P, Girasole G, Giusti A, Manfredini M, Arioli G, Matucci-Cerinic M, Bianchi G, Nuti R, Gonnelli S, Brandi ML, Muratore M, Rossini M. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int 2019; 30:391-402. [PMID: 30178159 DOI: 10.1007/s00198-018-4686-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/21/2018] [Indexed: 01/22/2023]
Abstract
UNLABELLED An innovative, non-ionizing technique to diagnose osteoporosis on lumbar spine and femoral neck was evaluated through a multicenter study involving 1914 women. The proposed method showed significant agreement with reference gold standard method and, therefore, a potential for early osteoporosis diagnoses and possibly improved patient management. INTRODUCTION To assess precision (i.e., short term intra-operator precision) and diagnostic accuracy of an innovative non-ionizing technique, REMS (Radiofrequency Echographic Multi Spectrometry), in comparison with the clinical gold standard reference DXA (dual X-ray absorptiometry), through an observational multicenter clinical study. METHODS In a multicenter cross-sectional observational study, a total of 1914 postmenopausal women (51-70 years) underwent spinal (n = 1553) and/or femoral (n = 1637) DXA, according to their medical prescription, and echographic scan of the same anatomical sites performed with the REMS approach. All the medical reports (DXA and REMS) were carefully checked to identify possible errors that could have caused inaccurate measurements: erroneous REMS reports were excluded, whereas erroneous DXA reports were re-analyzed where possible and otherwise excluded before assessing REMS accuracy. REMS precision was independently assessed. RESULTS In the spinal group, quality assessment on medical reports produced the exclusion of 280 patients because of REMS errors and 78 patients because of DXA errors, whereas 296 DXA reports were re-analyzed and corrected. Analogously, in the femoral group there were 205 exclusions for REMS errors, 59 exclusions for DXA errors, and 217 re-analyzed DXA reports. In the resulting dataset (n = 1195 for spine, n = 1373 for femur) REMS outcome showed a good agreement with DXA: the average difference in bone mineral density (BMD, bias ± 2SD) was -0.004 ± 0.088 g/cm2 for spine and - 0.006 ± 0.076 g/cm2 for femur. Linear regression showed also that the two methods were well correlated: standard error of the estimate (SEE) was 5.3% for spine and 5.8% for femur. REMS precision, expressed as RMS-CV, was 0.38% for spine and 0.32% for femur. CONCLUSIONS The REMS approach can be used for non-ionizing osteoporosis diagnosis directly on lumbar spine and femoral neck with a good level of accuracy and precision. However, a more rigorous operator training is needed to limit the erroneous acquisitions and to ensure the full clinical practicability.
Collapse
Affiliation(s)
- M Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica (CNR-IFC), Campus Ecotekne (Ed. A7), via per Monteroni, 73100, Lecce, Italy.
| | - D Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - O Viapiana
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - L Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - L Cavalli
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - C Caffarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - F Conversano
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - E Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce ASL-LE, Lecce, Italy
| | - P Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - G Girasole
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - A Giusti
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - M Manfredini
- Department of Neurosciences and Rehabilitation, "Carlo Poma" Hospital, ASST-Mantova, Mantova, Italy
| | - G Arioli
- Department of Neurosciences and Rehabilitation, "Carlo Poma" Hospital, ASST-Mantova, Mantova, Italy
| | - M Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence & SOD Rheumatology AOUC, Florence, Italy
| | - G Bianchi
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - R Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - S Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - M L Brandi
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - M Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce ASL-LE, Lecce, Italy
| | - M Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D, Wang W. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2311-2321. [PMID: 30575524 DOI: 10.1109/tuffc.2018.2872084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate the associations among ultrasonic backscatter, bone densities, and microstructure in bovine cancellous bone. Ultrasonic backscatter measurements were performed on 33 bovine cancellous bone specimens with a 2.25-MHz transducer. Ultrasonic apparent backscatter parameters ("apparent" means not compensating for ultrasonic attenuation and diffraction) were calculated with optimal signals of interest. The results showed that ultrasonic backscatter was significantly related to bone densities and microstructure ( R2 = 0.17 -0.88 and ). After adjusting the correlations by bone mineral density (BMD), the bone apparent density (BAD) and some trabecular structural features still contributed significantly to the adjusted correlations, with moderate additional variance explained ( ∆R2 = 9.7 % at best). Multiple linear regressions revealed that both BAD and trabecular structure contributed significantly and independently to the prediction of ultrasound backscatter (adjusted R2 = 0.75 -0.89 and ), explaining an additional 14% of the variance at most, compared with that of BMD measurements alone. The results proved that ultrasonic backscatter was primarily determined by BAD, not BMD, but the combination of bone structure and densities could achieve encouragingly better performances (89% of the variance explained at best) in predicting backscatter properties. This study demonstrated that ultrasonic apparent backscatter might provide additional density and structural features unrelated to current BMD measurement. Therefore, we suggest that ultrasonic backscatter measurement could play a more important role in cancellous bone evaluation.
Collapse
|
11
|
Du H, Mohanty K, Muller M. Microstructural characterization of trabecular bone using ultrasonic backscattering and diffusion parameters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:EL445. [PMID: 28599551 PMCID: PMC6909975 DOI: 10.1121/1.4982824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 05/28/2023]
Abstract
Finite differences time domain methods were utilized to simulate ultrasound propagation and scattering in anisotropic trabecular bone structures obtained from high resolution Computed Tomography (CT). The backscattered signals were collected and the incoherent contribution was extracted. The diffusion constant was calculated for propagations along and across the main direction of anisotropy, and was used to characterize the anisotropy of the trabecular microstructures. In anisotropic structures, the diffusion constant was significantly different in both directions, and the anisotropy of the diffusion constant was strongly correlated to the structural anisotropy measured on the CT images. These results indicate that metrics based on diffusion can be used to quantify the anisotropy of complex structures such as trabecular bone.
Collapse
Affiliation(s)
- Hualong Du
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| | - Kaustav Mohanty
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| | - Marie Muller
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| |
Collapse
|
12
|
Liu C, Xu F, Ta D, Tang T, Jiang Y, Dong J, Wang WP, Liu X, Wang Y, Wang WQ. Measurement of the Human Calcaneus In Vivo Using Ultrasonic Backscatter Spectral Centroid Shift. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:2197-2208. [PMID: 27562978 DOI: 10.7863/ultra.15.03030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/05/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES The aim of this study was to determine the relationship between the backscattered spectral centroid shift and the bone mineral density (BMD) in vivo and investigate the feasibility of using the backscattered spectral centroid shift to characterize the cancellous bone status. METHODS Ultrasonic backscatter measurements were performed in vivo on 1216 participants at the right calcaneus using an ultrasonic backscattered bone diagnostic system, and the backscattered spectral centroid shift was calculated at central frequencies of 3.5 and 5.0 MHz. The BMD values were measured at the sites of the lumbar spine and left hip by dual energy x-ray absorptiometry. RESULTS The study population included 592 male and 624 female participants aged 20 to 89 years. The correlations between the backscattered spectral centroid shift in the calcaneus and the spine and hip BMD were found to be statistically significant in both the male and female groups (P < .0001). Linear regression showed that the spectral centroid shift at 3.5 MHz had negative correlations with the spine BMD (R = -0.65 for male participants; R = -0.67 for female participants) and hip BMD (R = -0.64 for male participants; R = -0.64 for female participants). The spectral centroid shift at 5.0 MHz was also found to be closely related to the spine BMD (R = -0.68 for male participants; R = -0.68 for female participants) and hip BMD (R = -0.66 for male participants; R = -0.64 for female participants). CONCLUSIONS The moderate correlations observed between the spectral centroid shift and the spine and hip BMD demonstrate that the ultrasonic backscattered spectral centroid shift may be a useful measurement for assessment of the cancellous bone status.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China, Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, China
| | - Tao Tang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yunqi Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xindang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Ultrasonography, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Qi Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Nauleau P, Minonzio JG, Chekroun M, Cassereau D, Laugier P, Prada C, Grimal Q. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom. Phys Med Biol 2016; 61:4746-62. [PMID: 27272197 DOI: 10.1088/0031-9155/61/13/4746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.
Collapse
Affiliation(s)
- Pierre Nauleau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMR_S 1146, Laboratoire d'imagerie biomédicale, 15 rue de l'école de médecine, F-75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Casciaro S, Peccarisi M, Pisani P, Franchini R, Greco A, De Marco T, Grimaldi A, Quarta L, Quarta E, Muratore M, Conversano F. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1337-1356. [PMID: 27033331 DOI: 10.1016/j.ultrasmedbio.2016.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The aim of this paper was to investigate the clinical feasibility and the accuracy in femoral neck densitometry of the Osteoporosis Score (O.S.), an ultrasound (US) parameter for osteoporosis diagnosis that has been recently introduced for lumbar spine applications. A total of 377 female patients (aged 61-70 y) underwent both a femoral dual X-ray absorptiometry (DXA) and an echographic scan of the proximal femur. Recruited patients were sub-divided into a reference database used for ultrasound spectral model construction and a study population for repeatability assessments and accuracy evaluations. Echographic images and radiofrequency signals were analyzed through a fully automatic algorithm that performed a series of combined spectral and statistical analyses, providing as a final output the O.S. value of the femoral neck. Assuming DXA as a gold standard reference, the accuracy of O.S.-based diagnoses resulted 94.7%, with k = 0.898 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral density and corresponding DXA values, with r(2) up to 0.79 and root mean square error = 5.9-7.4%. The reported accuracy levels, combined with the proven ease of use and very good measurement repeatability, provide the adopted method with a potential for clinical routine application in osteoporosis diagnosis.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Antonella Grimaldi
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Laura Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Eugenio Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Maruizio Muratore
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | | |
Collapse
|
15
|
Puts R, Ruschke K, Ambrosi TH, Kadow-Romacker A, Knaus P, Jenderka KV, Raum K. A Focused Low-Intensity Pulsed Ultrasound (FLIPUS) System for Cell Stimulation: Physical and Biological Proof of Principle. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:91-100. [PMID: 26552085 DOI: 10.1109/tuffc.2015.2498042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative ultrasound (QUS) is a promising technique for bone tissue evaluation. Highly focused transducers used for QUS also have the capability to be applied for tissue-regenerative purposes and can provide spatially limited deposition of acoustic energy. We describe a focused low-intensity pulsed ultrasound (FLIPUS) system, which has been developed for the stimulation of cell monolayers in the defocused far field of the transducer through the bottom of the well plate. Tissue culture well plates, carrying the cells, were incubated in a special chamber, immersed in a temperature-controlled water tank. A stimulation frequency of 3.6 MHz provided an optimal sound transmission through the polystyrene well plate. The ultrasound was pulsed for 20 min daily at 100-Hz repetition frequency with 27.8% duty cycle. The calibrated output intensity corresponded to I(SATA) = 44.5 ± 7.1 mW/cm2, which is comparable to the most frequently reported nominal output levels in LIPUS studies. No temperature change by the ultrasound exposure was observed in the well plate. The system was used to stimulate rat mesenchymal stem cells (rMSCs). The applied intensity had no apoptotic effect and enhanced the expression of osteogenic markers, i.e., osteopontin (OPN), collagen 1 (Col-1), the osteoblast-specific transcription factor-Runx-2 and E11 protein, an early osteocyte marker, in stimulated cells on day 5. The proposed FLIPUS setup opens new perspectives for the evaluation of the mechanistic effects of LIPUS.
Collapse
|
16
|
Casciaro S, Conversano F, Pisani P, Muratore M. New perspectives in echographic diagnosis of osteoporosis on hip and spine. ACTA ACUST UNITED AC 2015; 12:142-50. [PMID: 26604940 DOI: 10.11138/ccmbm/2015.12.2.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the accepted "gold standard" method for bone mineral density (BMD) measurement and osteoporosis diagnosis is dual-energy X-ray absorptiometry (DXA). However, actual DXA effectiveness is limited by several factors, including intrinsic accuracy uncertainties and possible errors in patient positioning and/or post-acquisition data analysis. DXA employment is also restricted by the typical issues related to ionizing radiation employment (high costs, need of dedicated structures and certified operators, unsuitability for population screenings). The only commercially-available alternative to DXA is represented by "quantitative ultrasound" (QUS) approaches, which are radiation-free, cheaper and portable, but they cannot be applied on the reference anatomical sites (lumbar spine and proximal femur). Therefore, their documented clinical usefulness is restricted to calcaneal applications on elderly patients (aged over 65 y), in combination with clinical risk factors and only for the identification of healthy subjects at low fracture risk. Literature-reported studies performed some QUS measurements on proximal femur, but their clinical translation is mostly hindered by intrinsic factors (e.g., device bulkiness). An innovative ultrasound methodology has been recently introduced, which performs a combined analysis of B-mode images and corresponding "raw" radiofrequency signals acquired during an echographic scan of the target reference anatomical site, providing two novel parameters: Osteoporosis Score and Fragility Score, indicative of BMD level and bone strength, respectively. This article will provide a brief review of the available systems for osteoporosis diagnosis in clinical routine contexts, followed by a synthesis of the most promising research results on the latest ultrasound developments for early osteoporosis diagnosis and fracture prevention.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Maurizio Muratore
- OU of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| |
Collapse
|
17
|
Cuccaro R, Musacchio C, Giuliano Albo PA, Troia A, Lago S. Acoustical characterization of polysaccharide polymers tissue-mimicking materials. ULTRASONICS 2015; 56:210-219. [PMID: 24794507 DOI: 10.1016/j.ultras.2014.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Tissue-mimicking phantoms play a crucial role in medical ultrasound research because they can simulate biological soft tissues. In last years, many types of polymeric tissues have been proposed and characterized from an acoustical and a thermal point of view, but, rarely, a deep discussion about the quality of the measurements, in terms of the uncertainty evaluation, has been reported. In this work, considering the necessity to develop laboratory standards for the measurement of ultrasonic exposure and dose quantities, a detailed description of the experimental apparatuses for the sound speed and the attenuation coefficient measurements is given, focusing the attention on the uncertainty evaluation both of the results and analysis algorithms. In particular, this algorithm reveals a novel empirical relation, fixing a limit to the energy content (therefore limits the number of cycles) of the three parts in which the authors have proposed to divide the acoustical signal. Furthermore, the realisation of multi-components phantoms, Agar and Phytagel based tissue-mimicking gels along with others long chain molecules (dextrane or polyvinyl alcohol) and scattering materials (silicon carbide and kieselguhr) are investigated. This paper reports accurate speed of sound and attenuation coefficient measurements. Speed of sound is measured by a pulse-echo technique in far-field condition, using an optical glass buffer rod; while attenuation coefficient is determined by an insertion technique, using demineralized water as reference material. The experimental sound speed results are subjected to an overall estimated relative uncertainty of about 1.5% and the attenuation coefficient uncertainty is less than 2.5%. For the development of laboratory standards, a detailed analysis of the measurement uncertainty is fundamental to make sample properties comparable. The authors believe this study could represent the right direction to make phantoms characterizations referable and traceable.
Collapse
Affiliation(s)
- Rugiada Cuccaro
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
| | - Chiara Musacchio
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
| | - P Alberto Giuliano Albo
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
| | - Adriano Troia
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
| | - Simona Lago
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
| |
Collapse
|
18
|
Conversano F, Franchini R, Greco A, Soloperto G, Chiriacò F, Casciaro E, Aventaggiato M, Renna MD, Pisani P, Di Paola M, Grimaldi A, Quarta L, Quarta E, Muratore M, Laugier P, Casciaro S. A novel ultrasound methodology for estimating spine mineral density. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:281-300. [PMID: 25438845 DOI: 10.1016/j.ultrasmedbio.2014.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 05/10/2023]
Abstract
We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used for US spectral model construction and a study population for repeatability and accuracy evaluation. US images and radiofrequency signals were analyzed via a new fully automatic algorithm that performed a series of spectral and statistical analyses, providing a novel diagnostic parameter called the osteoporosis score (O.S.). If dual X-ray absorptiometry is assumed to be the gold standard reference, the accuracy of O.S.-based diagnoses was 91.1%, with k = 0.859 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral densities and corresponding dual X-ray absorptiometry values, with r(2) values up to 0.73 and a root mean square error of 6.3%-9.3%. The results obtained suggest that the proposed method has the potential for future routine application in US-based diagnosis of osteoporosis.
Collapse
Affiliation(s)
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Giulia Soloperto
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Fernanda Chiriacò
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Ernesto Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Marco Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Antonella Grimaldi
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Laura Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Eugenio Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Maurizio Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Pascal Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC 06, INSERM, CNRS, Paris, France
| | - Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
19
|
Malo MKH, Töyräs J, Karjalainen JP, Isaksson H, Riekkinen O, Jurvelin JS. Ultrasound backscatter measurements of intact human proximal femurs--relationships of ultrasound parameters with tissue structure and mineral density. Bone 2014; 64:240-5. [PMID: 24769331 DOI: 10.1016/j.bone.2014.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Ultrasound reflection and backscatter parameters are related to the mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1 years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the anteroposterior and lateromedial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analyzed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R2=0.44 and 0.45), cadaver age (R2=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R2=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to structural properties and mineral density of trabecular bone.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, Kuopio, Finland.
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, Kuopio, Finland
| | - J P Karjalainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - H Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, POB 118, SE-22100, Lund, Sweden
| | - O Riekkinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - J S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
20
|
Cassereau D, Nauleau P, Bendjoudi A, Minonzio JG, Laugier P, Bossy E, Grimal Q. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur. ULTRASONICS 2014; 54:1197-1202. [PMID: 23849752 DOI: 10.1016/j.ultras.2013.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach.
Collapse
Affiliation(s)
- Didier Cassereau
- Laboratoire d'Imagerie Paramétrique, UPMC Univ Paris 06, CNRS UMR 7623, ESPCI ParisTech, 15 rue de l'Ecole de Médecine, 75006 Paris, France.
| | - Pierre Nauleau
- Laboratoire d'Imagerie Paramétrique, UPMC Univ Paris 06, CNRS UMR 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Aniss Bendjoudi
- Institut Langevin, CNRS UMR 7587, ESPCI ParisTech, INSERM ERL U979, Université Denis Diderot-Paris7, 1 rue Jussieu, 75005 Paris, France
| | - Jean-Gabriel Minonzio
- Laboratoire d'Imagerie Paramétrique, UPMC Univ Paris 06, CNRS UMR 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Pascal Laugier
- Laboratoire d'Imagerie Paramétrique, UPMC Univ Paris 06, CNRS UMR 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Emmanuel Bossy
- Institut Langevin, CNRS UMR 7587, ESPCI ParisTech, INSERM ERL U979, Université Denis Diderot-Paris7, 1 rue Jussieu, 75005 Paris, France
| | - Quentin Grimal
- Laboratoire d'Imagerie Paramétrique, UPMC Univ Paris 06, CNRS UMR 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
21
|
Abstract
Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.
Collapse
Affiliation(s)
- Kay Raum
- Julius Wolff Institute & Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
22
|
Grimal Q, Rohrbach D, Grondin J, Barkmann R, Glüer CC, Raum K, Laugier P. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1015-1026. [PMID: 24486239 DOI: 10.1016/j.ultrasmedbio.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method.
Collapse
Affiliation(s)
- Quentin Grimal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France.
| | - Daniel Rohrbach
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julien Grondin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Claus-C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Kay Raum
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| |
Collapse
|
23
|
Nakazono E, Miyazaki H, Abe S, Imai K, Masuda T, Iwamoto M, Moriguchi R, Ueno H, Ono M, Yazumi K, Moriyama K, Nakano S, Tsuda H. Discontinuation of leisure time impact-loading exercise is related to reduction of a calcaneus quantitative ultrasound parameter in young adult Japanese females: a 3-year follow-up study. Osteoporos Int 2014; 25:485-95. [PMID: 23794043 DOI: 10.1007/s00198-013-2416-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED A 3-year follow-up study on 334 young Japanese females enrolled in a university at the age of 18 years revealed that discontinuation of leisure time impact-loading exercises performed in junior high and/or high school was associated with increased risk of reduction in calcaneus osteo-sono assessment index (OSI). INTRODUCTION Bone strength rapidly increases during puberty and reaches its peak by the end of adolescence. The aim of this study was to determine the lifestyle factors that influence the maintenance of calcaneus OSI in young adult females around the time when peak bone mass is attained. METHODS Annual health checkups including OSI measurements, anthropometrics, lifestyle analysis, and blood examination were performed 4 times on 334 Japanese females enrolled in a university at the age of 18 years. According to the slope of OSI change during the 3-year follow-up, the subjects were grouped into two categories: OSI loss (the lowest tertile) and OSI gain/stable (the second and third tertiles). RESULTS At the baseline assessment, the OSI loss group had higher OSI and height and an earlier menarche age than the OSI gain/stable group. Performing leisure time impact-loading exercise in junior high and/or high school but discontinuing it at university was associated with increased risk of OSI loss, independent of OSI, height and weight at the age of 18 years, weight change during follow-up, age of menarche, energy-adjusted nutrient intake, and alcohol drinking; the odds ratios were 4.1-4.9 compared with those performing impact-loading exercise at university. In particular, duration, frequency, and subjective intensity of impact-loading exercise during high school were positively associated with OSI loss. CONCLUSION Discontinuation of leisure time impact-loading exercises performed during late adolescence is associated with an increased risk of OSI loss in young adult females during the 3-year follow-up period.
Collapse
Affiliation(s)
- E Nakazono
- Graduate School of Health and Nutrition Sciences, Nakamura Gakuen University, 5-7-1, Befu, Jounan-ku, Fukuoka, 814-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nauleau P, Grimal Q, Minonzio JG, Laugier P, Prada C. Circumferential guided wave measurements of a cylindrical fluid-filled bone-mimicking phantom. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:994-1001. [PMID: 25234906 DOI: 10.1121/1.4861366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the context of hip fracture risk prediction, measurement of guided waves could improve the assessment of cortical femoral neck properties. The decomposition of the time reversal operator (DORT) method was previously shown to be efficient to measure circumferential guided modes in an empty cortical bone-mimicking tube of circular cross section. In this study, an adaptation of the DORT method is proposed to probe the same bone-mimicking tube but filled with a marrow-mimicking fluid. The contributions to the backscattered field of waves multiply reflected in the cavity of the tube interfere with those of circumferential guided waves. The former contributions are eliminated in the backpropagation image using ad hoc criterion determined with simulation. Eight portions of different guided modes were observed from experimental and simulated data. They were identified by comparison with theoretical predictions. This work confirms the feasibility of measuring guided waves in a fluid-filled tube of bone-mimicking material with the DORT method.
Collapse
Affiliation(s)
- Pierre Nauleau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005, Paris, France
| | - Quentin Grimal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005, Paris, France
| | - Jean-Gabriel Minonzio
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005, Paris, France
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005, Paris, France
| | - Claire Prada
- Institut Langevin, Ecole Superieure de Physique et de Chimie Industrielles Paris Tech, Universite Denis Diderot Paris 7, CNRS 7587, 1 rue Jussieu, F-75005 Paris, France
| |
Collapse
|
25
|
Rohde K, Rohrbach D, Glüer CC, Laugier P, Grimal Q, Raum K, Barkmann R. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:302-313. [PMID: 24474136 DOI: 10.1109/tuffc.2014.6722615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness.
Collapse
|
26
|
Mathieu V, Chappard C, Vayron R, Michel A, Haïat G. Radial anatomic variation of ultrasonic velocity in human cortical bone. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2185-2193. [PMID: 23969161 DOI: 10.1016/j.ultrasmedbio.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Quantitative ultrasound techniques can be used to retrieve cortical bone quality. The aim of this study was to investigate the anatomic variations in speed of sound (SOS) in the radial direction of cortical bone tissue. SOS measurements were realized in 17 human cortical bone samples with a 3.5-MHz transverse transmission device. The radial dependence of SOS was investigated in a direction perpendicular to the periosteum. For each sample, bone porosity was measured using an X-ray micro-computed tomography device. The mean SOS was 3586 ± 255 m/s. For 16 of 17 specimens, similar radial variations in SOS were observed. In the periosteal region, SOS first decreased in the direction of the endosteum and reached a minimum value approximately in the middle of the cortical bone. SOS then increased, moving to the endosteal region. A significant negative correlation was obtained between SOS and porosity (R = -0.54, p = 0.02).
Collapse
Affiliation(s)
- Vincent Mathieu
- CNRS, Laboratoire Modélisation et Simulation Multi-Échelle, UMR CNRS 8208, Créteil, France
| | | | | | | | | |
Collapse
|
27
|
Lee KI. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:EL381-EL386. [PMID: 24181979 DOI: 10.1121/1.4822420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, correlations of linear and nonlinear ultrasound parameters (speed of sound, normalized broadband ultrasound attenuation, and nonlinear parameter B/A) with bone mineral density and microarchitectural parameters were investigated in 28 bovine femoral trabecular bone samples in vitro. All three ultrasound parameters exhibited relatively high correlation coefficients with the indexes of bone quantity (bone mineral density and bone volume fraction) and lower correlation coefficients with the remaining microarchitectural parameters. These results suggest that B/A, in addition to speed of sound and attenuation, may have potential as an index for the assessment of bone status and osteoporosis.
Collapse
Affiliation(s)
- Kang Il Lee
- Department of Physics, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
28
|
Rohrbach D, Preininger B, Hesse B, Gerigk H, Perka C, Raum K. The early phases of bone healing can be differentiated in a rat osteotomy model by focused transverse-transmission ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1642-1653. [PMID: 23830097 DOI: 10.1016/j.ultrasmedbio.2013.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Here we describe the use of a 5-MHz focused transmission system to image the bone repair region and to distinguish the early healing phases in a rat osteotomy (OT) model. Twelve-month-old female rats underwent a 2-mm OT. After 6 wk of consolidation, 2-D projection images of time-of-flight, speed of sound, and ultrasound attenuation were measured in vitro. The tissue types in the OT gap region were assessed by site-matched histology sections and micro-computed tomography (μCT). In the cases investigated, OT gap regions containing fibrous tissue (group A) were found to have similar properties compared with adjacent muscle tissue, whereas regions filled with cartilage and mineralized callus tissues (group B) differed significantly. Analysis of variance revealed that the healing group had a stronger effect on acoustic parameters (F < 35) than on μCT-based parameters (F < 22). This pilot study reports the feasibility of transverse transmission quantitative ultrasound in assessment of the onset of cartilage formation during callus formation.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, Kröger H, Raum K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013; 53:451-8. [PMID: 23334084 DOI: 10.1016/j.bone.2013.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Tr<c33Ct), location (c33(Ct.Ps)=37.7GPa>c33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grimal Q, Grondin J, Guérard S, Barkmann R, Engelke K, Glüer CC, Laugier P. Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res 2013; 28:302-12. [PMID: 22915370 DOI: 10.1002/jbmr.1742] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022]
Abstract
A significant risk of femoral neck (FN) fracture exists for men and women with an areal bone mineral density (aBMD) higher than the osteoporotic range, as measured with dual-energy X-ray absorptiometry (DXA). Separately measuring the cortical and trabecular FN compartments and combining the results would likely be a critical aspect of enhancing the diagnostic capabilities of a new technique. Because the cortical shell determines a large part of FN strength a novel quantitative ultrasound (QUS) technique that probes the FN cortical compartment was implemented. The sensitivity of the method to variations of FN cortical properties and FN strength was tested. Nine femurs (women, mean age 83 years) were subjected to QUS to measure the through transmission time-of-flight (TOF) at the FN and mechanical tests to assess strength. Quantitative computed tomography (QCT) scans were performed to enable analysis of the dependence of TOF on bone parameters. DXA was also performed for reference. An ultrasound wave propagating circumferentially in the cortical shell was measured in all specimens. Its TOF was not influenced by the properties of the trabecular compartment. Averaged TOF for nine FN measurement positions/orientations was significantly correlated to strength (R2 = 0.79) and FN cortical QCT variables: total BMD (R(2) = 0.54); regional BMD in the inferoanterior (R2 = 0.90) and superoanterior (R2 = 0.57) quadrants; and moment of inertia (R2 = 0.71). The results of this study demonstrate that QUS can perform a targeted measurement of the FN cortical compartment. Because the method involves mechanical guided waves, the QUS variable is related to the geometric and material properties of the cortical shell (cortical thickness, tissue elasticity, and porosity). This work opens the way to a multimodal QUS assessment of the proximal femur, combining our approach targeting the cortical shell with the existing modality sensitive to the trabecular compartment. In vivo feasibility of our approach has to be confirmed with experimental data in patients.
Collapse
Affiliation(s)
- Quentin Grimal
- UPMC University Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Geusens P, van Geel T, van den Bergh J. Can Hip Fracture Prediction in Women be Estimated beyond Bone Mineral Density Measurement Alone? Ther Adv Musculoskelet Dis 2012; 2:63-77. [PMID: 22870438 DOI: 10.1177/1759720x09359541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The etiology of hip fractures is multifactorial and includes bone and fall-related factors. Low bone mineral density (BMD) and BMD-related and BMD-independent geometric components of bone strength, evaluated by hip strength analysis (HSA) and finite element analysis analyses on dual-energy X-ray absorptiometry (DXA) images, and ultrasound parameters are related to the presence and incidence of hip fracture. In addition, clinical risk factors contribute to the risk of hip fractures, independent of BMD. They are included in the fracture risk assessment tool (FRAX) case finding algorithm to estimate in the individual patient the 10-year risk of hip fracture, with and without BMD. Fall risks are not included in FRAX, but are included in other case finding tools, such as the Garvan algorithm, to predict the 5- and 10-year hip fracture risk. Hormones, cytokines, growth factors, markers of bone resorption and genetic background have been related to hip fracture risk. Vitamin D deficiency is endemic worldwide and low serum levels of 25-hydroxyvitamin D [25(OH)D] predict hip fracture risk. In the context of hip fracture prevention calculation of absolute fracture risk using clinical risks, BMD, bone geometry and fall-related risks is feasible, but needs further refinement by integrating bone and fall-related risk factors into a single case finding algorithm for clinical use.
Collapse
Affiliation(s)
- Piet Geusens
- Department of General Practice, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
32
|
Karjalainen JP, Riekkinen O, Töyräs J, Hakulinen M, Kröger H, Rikkonen T, Salovaara K, Jurvelin JS. Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures. Osteoporos Int 2012; 23:1287-95. [PMID: 21656263 DOI: 10.1007/s00198-011-1682-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED About 75% of patients suffering from osteoporosis are not diagnosed. This study describes a multi-site bone ultrasound method for osteoporosis diagnostics. In comparison with axial dual energy X-ray absorptiometry (DXA), the ultrasound method showed good diagnostic performance and could discriminate fracture subjects among elderly females. INTRODUCTION Axial DXA, the gold standard diagnostic method for osteoporosis, predicts fractures only moderately. At present, no reliable diagnostic methods are available at the primary health care level. Here, a multi-site ultrasound method is proposed for osteoporosis diagnostics. METHODS Thirty elderly women were examined using the ultrasound backscatter measurements in proximal femur, proximal radius, proximal and distal tibia in vivo. First, we predicted the areal bone mineral density (BMD) at femoral neck by ultrasound measurements in tibia combined with specific subject characteristics (density index, DI) and, second, we tested the ability of ultrasound backscatter measurements at proximal femur to discriminate between individuals with previously fractured hips from those without fractures. Areal BMD was determined by axial DXA. RESULTS Combined ultrasound parameters, cortical thickness at distal and proximal tibia, with age and weight of the subject, provided a significant estimate of BMD(neck) (r = 0.86, p < 0.001, n = 30). When inserted into FRAX (World Health Organization fracture risk assessment tool), the DI indicated the same treatment proposal as the BMD(neck) with 86% sensitivity and 100% specificity. The receiver operating characteristic analyses, with a combination of ultrasound parameters and patient characteristics, discriminated fracture subjects from the controls similarly as the model combining BMD(neck) and patient characteristics. CONCLUSIONS For the first time, ultrasound backscatter measurements of proximal femur were conducted in vivo. The results indicate that ultrasound parameters, combined with patient characteristics, may provide a means for osteoporosis diagnostics.
Collapse
Affiliation(s)
- J P Karjalainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Malo MKH, Karjalainen JP, Riekkinen O, Isaksson H, Jurvelin JS, Töyräs J. Effects of non-optimal focusing on dual-frequency ultrasound measurements of bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1182-1188. [PMID: 21693400 DOI: 10.1109/tuffc.2011.1928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In pulse-echo (PE) ultrasound measurements, the use of focused transducers is desirable for quantitative assessment of bone characteristics because of the attenuation in the overlying soft tissues. However, the variable thickness and composition of the soft tissue overlying bone affect the focal depth of the ultrasound beam and induce errors into the measurements. To compensate for the attenuation-related effects caused by the interfering soft tissue (i.e., fat and lean tissue), a dual-frequency ultrasound (DFUS) technique was recently introduced. The aim of this study was to investigate the effect of non-optimal focal depth of the ultrasound beam on the determination of the integrated reflection coefficient (IRC) of bone when overlaid by an interfering layer composed of oil and water. The feasibility of the DFUS-based correction of the IRC was evaluated through numerical simulations and experimental measurements. Even when the interfering layer-bone interface was out of focus, the total thickness of the interfering layer could be accurately determined with the technique. However, based on the simulations, the errors in the determination of the composition of the interfering layer increased (0.004 to 113.8%) with the increase in distance between the interfering layer-bone interface and the focus of the ultrasound beam. Attenuation compensation, based on the true composition of the interfering layer, resulted in an average relative error of 22.3% in the IRC values calculated from the simulations. Interestingly, the attenuation compensation with the interfering layer composition estimated using the DFUS technique resulted in a smaller average relative error of 14.9% in the IRC values. The simulations suggest that DFUS can reduce the errors induced by soft tissue in bone PE ultrasound measurements. The experimental measurements indicate that the accuracy of the IRC measurements is rather similar when using DFUS correction or correction based on the true composition of the interfering layer. However, the results suggest that accurate determination of soft tissue composition may be difficult without optimal focusing of the ultrasound beam on the soft tissue-bone interface.
Collapse
Affiliation(s)
- Markus K H Malo
- University of Eastern Finland, Department of Applied Physics, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|