1
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
2
|
Shanas N, Querido W, Oswald J, Jepsen K, Carter E, Raggio C, Pleshko N. Infrared Spectroscopy-Determined Bone Compositional Changes Associated with Anti-Resorptive Treatment of the oim/oim Mouse Model of Osteogenesis Imperfecta. APPLIED SPECTROSCOPY 2022; 76:416-427. [PMID: 34643134 DOI: 10.1177/00037028211055477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Applications of vibrational spectroscopy to assess bone disease and therapeutic interventions are continually advancing, with tissue mineral and protein composition frequently investigated. Here, we used two spectroscopic approaches for determining bone composition in a mouse model (oim) of the brittle bone disease osteogenesis imperfecta (OI) with and without antiresorptive agent treatment (alendronate, or ALN, and RANK-Fc). Near-infrared (NIR) spectral analysis using a fiber optic probe and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) mode were applied to investigate bone composition, including water, mineral, and protein content. Spectral parameters revealed differences among the control wildtype (WT) and OIM groups. NIR spectral analysis of protein and water showed that OIM mouse humerii had ∼50% lower protein and ∼50% higher overall water content compared to WT bone. Moreover, some OIM-treated groups showed a reduction in bone water compared to OIM controls, approximating values observed in WT bone. Differences in bone quality based on increased mineral content and reduced carbonate content were also found between some groups of treated OIM and WT bone, but crystallinity did not differ among all groups. The spectroscopically determined parameters were evaluated for correlations with gold-standard mechanical testing values to gain insight into how composition influenced bone strength. As expected, bone mechanical strength parameters were consistently up to threefold greater in WT mice compared to OIM groups, except for stiffness in the ALN-treated OIM groups. Furthermore, bone stiffness, maximum load, and post-yield displacement showed the strongest correlations with NIR-determined protein content (positive correlations) and bound-water content (negative correlations). These results demonstrate that in this study, NIR spectral parameters were more sensitive to bone composition differences than ATR parameters, highlighting the potential of this nondestructive approach for screening of bone diseases and therapeutic efficacy in pre-clinical models.
Collapse
Affiliation(s)
- No'ad Shanas
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Jack Oswald
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Karl Jepsen
- Department of Orthopaedic Surgery and Bioengineering. University of Michigan, Ann Arbor, MI, USA
| | - Erin Carter
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Cathleen Raggio
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Cardinal M, Chretien A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Manicourt DH, Behets C. Gender-Related Impact of Sclerostin Antibody on Bone in the Osteogenesis Imperfecta Mouse. Front Genet 2021; 12:705505. [PMID: 34447412 PMCID: PMC8383339 DOI: 10.3389/fgene.2021.705505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osteogenesis imperfecta (OI), which is most often due to a collagen type 1 gene mutation, is characterized by low bone density and bone fragility. In OI patients, gender-related differences were reported, but data in the literature are not convergent. We previously observed that sclerostin antibody (Scl-Ab), which stimulates osteoblast Wnt pathway via sclerostin inactivation, improved spine and long-bone parameters and biomechanical strength in female oim/oim mice, a validated model of human type 3 OI. Here, we wanted to highlight the effect of Scl-Ab on male oim/oim bones in order to identify a possible distinct therapeutic effect from that observed in females. According to the same protocol as our previous study with female mice, male wild-type (Wt) and oim/oim mice received vehicle or Scl-Ab from 5 to 14 weeks of age. Clinimetric and quantitative bone parameters were studied using X-rays, peripheral quantitative computed tomography, microradiography, and dynamic histomorphometry and compared to those of females. Contrary to Wt mice, male oim/oim had significantly lower weight, snout-sacrum length, and bone mineral content than females at 5 weeks. No significant difference in these clinimetric parameters was observed at 14 weeks, whereas male oim showed significantly more long-bone fractures than females. Scl-Ab improved bone mineral density and bone volume/total volume ratio (BV/TV) of vertebral body in Wt and oim/oim, without significant difference between male and female at 14 weeks. Male vehicle oim/oim had a significantly lower cortical thickness (Ct.Th) and BV/TV of tibial diaphysis than female and showed a higher number of fractures at 14 weeks. Scl-Ab increased midshaft periosteal apposition rate in such a way that tibial Ct.Th of male oim/oim was not significantly different from the female one at 14 weeks. The number of fractures was lower in male than female oim/oim after 14 weeks of Scl-Ab treatment, but this difference was not significant. Nevertheless, Scl-Ab-treated oim/oim male and female mice remained smaller than the Wt ones. In conclusion, our results highlighted differences between male and female oim/oim at 4 and 14 weeks of age, as well as some male-specific response of cortical bone to Scl-Ab. These gender-related particularities of oim/oim should be considered when testing experimental treatments.
Collapse
Affiliation(s)
- Mickaël Cardinal
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Antoine Chretien
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Thomas Roels
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Sébastien Lafont
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Michael S Ominsky
- Radius Inc., Waltham, MA, United States.,Amgen Inc., Thousand Oaks, CA, United States
| | - Jean-Pierre Devogelaer
- Pole of Rheumatic Pathologies, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Daniel H Manicourt
- Pole of Rheumatic Pathologies, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Abstract
Osteogenesis imperfecta (OI) is a disease characterised by altered bone tissue material properties together with abnormal micro and macro-architecture and thus bone fragility, increased bone turnover and hyperosteocytosis. Increasingly appreciated are the soft tissue changes, sarcopenia in particular. Approaches to treatment are now multidisciplinary, with bisphosphonates having been the primary pharmacological intervention over the last 20 years. Whilst meta-analyses suggest that anti-fracture efficacy across the life course is equivocal, there is good evidence that for children bisphosphonates reduce fracture risk, increase vertebral size and improve vertebral shape, as well as improving motor function and mobility. The genetics of OI continues to provide insights into the molecular pathogenesis of the disease, although the pathophysiology is less clear. The complexity of the multi-scale interactions of bone tissue with cellular function are gradually being disentangled, but the fundamental question of why increased tissue brittleness should be associated with so many other changes is unclear; ER stress, pro-inflammatory cytokines, accelerated senesence and altered matrix component release might all contribute, but a unifying hypothesis remains elusive. New approaches to therapy are focussed on increasing bone mass, following the paradigm established by the treatment of postmenopausal osteoporosis. For adults, this brings the prospect of restoring previously lost bone - for children, particularly at the severe end of the spectrum, the possibility of further reducing fracture frequency and possibly altering growth and long term function are attractive. The alternatives that might affect tissue brittleness are autophagy enhancement (through the removal of abnormal type I collagen aggregates) and stem cell transplantation - both still at the preclinical stage of assessment. Preclinical assessment is not supportive of targeting inflammatory pathways, although understanding why TGFb signalling is increased, and whether that presents a treatment target in OI, remains to be established.
Collapse
Affiliation(s)
- Fawaz Arshad
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK.
| |
Collapse
|
5
|
Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021; 26:922. [PMID: 33572384 PMCID: PMC7916244 DOI: 10.3390/molecules26040922] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.
Collapse
Affiliation(s)
| | | | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA; (W.Q.); (S.K.)
| |
Collapse
|
6
|
Muniz FWMG, Silva BFD, Goulart CR, Silveira TMD, Martins TM. Effect of adjuvant bisphosphonates on treatment of periodontitis: Systematic review with meta-analyses. J Oral Biol Craniofac Res 2021; 11:158-168. [PMID: 33537188 DOI: 10.1016/j.jobcr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 01/29/2023] Open
Abstract
Background Previous systematic reviews showed additional benefit of adjuvant bisphosphonates (BP) in the treatment of periodontitis. In contrast, it is unclear the effect of BP in patients with diabetes and smokers, its pooled effect when administered locally or systemically is also unknown. Objectives This study aimed to systematically review the literature about the use of BP as adjuvant to nonsurgical scaling and root planning (SRP). Methodology This study followed the PRISMA guideline. This study included randomized clinical trials that administered locally or systemically BPs as adjuvant for periodontal treatment. Five databases were used. Meta-analyses were performed, using the pooled mean differences (MD) for clinical attachment level (CAL) and probing pocket depth (PPD). Standard mean difference (SMD) was used for radiographic assessment (RADIO). Subgroup analyses were performed for locally delivered meta-analyses, considering diabetes and smoking exposure. Results Thirteen studies were included. It was showed MD of 1.52 mm (95%CI: 0.97-2.07) and 1.44 mm (95%CI: 1.08-1.79) for PPD reduction and CAL gain, respectively, for locally delivered BP. BP was not able to provide significant improvements in smokers (subgroup analysis) when considering CAL (MD: 1.37; 95%CI: -0.17-2.91) and PPD (MD: 1.35; 95%CI: -0.13-2.83). Locally delivered BP also improved significantly the RADIO assessments (SMD: 4.34; 95%CI: 2.94-5.74). MD for systemically administered BP was 0.40 mm (95%CI: 0.21-0.60), 0.51 mm (95%CI: 0.19-0.83) and 1.05 (95%CI: 0.80-1.31) for PPD, CAL and RADIO, respectively. Conclusion The administration of BP in adjunct to SRP may result in additional clinical effects.
Collapse
Affiliation(s)
| | - Bernardo Franco da Silva
- School of Dentistry, Federal University Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| | - Conrado Richel Goulart
- School of Dentistry, Federal University Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| | | | - Thiago Marchi Martins
- Department of Periodontology, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| |
Collapse
|
7
|
Comparable Effects of Strontium Ranelate and Alendronate Treatment on Fracture Reduction in a Mouse Model of Osteogenesis Imperfecta. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4243105. [PMID: 33506016 PMCID: PMC7810565 DOI: 10.1155/2021/4243105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
Alendronate (Aln) has been the first-line drug for osteogenesis imperfecta (OI), while the comparable efficacy of Aln and strontium ranelate (SrR) remains unclear. This study is aimed at comparing the effects of SrR and Aln treatment in a mouse model of OI. Three-week-old oim/oim and wt/wt female mice were treated with SrR (1800 mg/kg/day), Aln (0.21 mg/kg/week), or vehicle (Veh) for 11 weeks. After the treatment, the average number of fractures sustained per mouse was significantly reduced in both SrR- and Aln-treated oim/oim mice. The effect was comparable between these two agents. Both SrR and Aln significantly increased trabecular bone mineral density, bone histomorphometric parameters (bone volume, trabecular number, and cortical thickness and area), and biomechanical parameters (maximum load and stiffness) as compared with the Veh group. Both treatments reduced bone resorption parameters, with Aln demonstrating a stronger inhibitory effect than SrR. In contrast to its inhibitory effect on bone resorption, SrR maintained bone formation. Aln, however, also suppressed bone formation coupled with an inhibitory effect on bone resorption. The results of this study indicate that SrR has comparable effects with Aln on reducing fractures and improving bone mass and strength. In clinical practice, SrR may be considered an option for patients with OI when other medications are not suitable or have evident contraindications.
Collapse
|
8
|
Cho TJ, Ko JM, Kim H, Shin HI, Yoo WJ, Shin CH. Management of Osteogenesis Imperfecta: A Multidisciplinary Comprehensive Approach. Clin Orthop Surg 2020; 12:417-429. [PMID: 33274017 PMCID: PMC7683189 DOI: 10.4055/cios20060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by recurring fractures and limb and spine deformities. With the advent of medical therapeutics and the discovery of causative genes, as well as the introduction of a newly devised intramedullary rod, the general condition and ambulatory function of patients diagnosed with OI have been improved over the past decades. This review covers recent developments in research and management of OI.
Collapse
Affiliation(s)
- Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyoungmin Kim
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Ik Shin
- Department of Rehabilitation Medicine, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Won Joon Yoo
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
10
|
Cardinal M, Dessain A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH. Sclerostin-Antibody Treatment Decreases Fracture Rates in Axial Skeleton and Improves the Skeletal Phenotype in Growing oim/oim Mice. Calcif Tissue Int 2020; 106:494-508. [PMID: 32025752 DOI: 10.1007/s00223-019-00655-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
In osteogenesis imperfecta (OI), vertebrae brittleness causes thorax deformations and leads to cardiopulmonary failure. As sclerostin-neutralizing antibodies increase bone mass and strength in animal models of osteoporosis, their administration in two murine models of severe OI enhanced the strength of vertebrae in growing female Crtap-/- mice but not in growing male Col1a1Jrt/+ mice. However, these two studies ignored the impact of antibodies on spine growth, fracture rates, and compressive mechanical properties. Here, we conducted a randomized controlled trial in oim/oim mice, an established model of human severe OI type III due to a mutation in Col1a2. Five-week-old female WT and oim/oim mice received either PBS or sclerostin antibody (Scl-Ab) for 9 weeks. Analyses included radiography, histomorphometry, pQCT, microcomputed tomography, and biomechanical testing. Though it did not modify vertebral axial growth, Scl-Ab treatment markedly reduced the fracture prevalence in the pelvis and caudal vertebrae, enhanced osteoblast activity (L4), increased cervico-sacral spine BMD, and improved the lumbosacral spine bone cross-sectional area. Scl-Ab did not impact vertebral height and body size but enhanced the cortical thickness and trabecular bone volume significantly in the two Scl-Ab groups. At lumbar vertebrae and tibial metaphysis, the absolute increase in cortical and trabecular bone mass was higher in Scl-Ab WT than in Scl-Ab oim/oim. The effects on trabecular bone mass were mainly due to changes in trabecular number at vertebrae and in trabecular thickness at metaphyses. Additionally, Scl-Ab did not restore a standard trabecular network, but improved bone compressive ultimate load with more robust effects at vertebrae than at metaphysis. Overall, Scl-Ab treatment may be beneficial for reducing vertebral fractures and spine deformities in patients with severe OI.
Collapse
Affiliation(s)
- Mickaël Cardinal
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 52 Avenue Mounier - B1.52.04, 1200, Brussels, Belgium.
| | - Alicia Dessain
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 52 Avenue Mounier - B1.52.04, 1200, Brussels, Belgium
| | - Thomas Roels
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 52 Avenue Mounier - B1.52.04, 1200, Brussels, Belgium
| | - Sébastien Lafont
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 52 Avenue Mounier - B1.52.04, 1200, Brussels, Belgium
| | - Michael S Ominsky
- Radius Health, Inc. (Formerly at Amgen Inc, Thousand Oaks, CA, USA), Waltham, MA, USA
| | - Jean-Pierre Devogelaer
- Pole of Rheumatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Daniel Chappard
- GEROM, Groupe d'Etudes sur le Remodelage Osseux et les bioMatériaux, University of Angers, 49933, Angers, France
| | - Guillaume Mabilleau
- GEROM, Groupe d'Etudes sur le Remodelage Osseux et les bioMatériaux, University of Angers, 49933, Angers, France
| | - Patrick Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Catherine Nyssen-Behets
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 52 Avenue Mounier - B1.52.04, 1200, Brussels, Belgium
| | - Daniel H Manicourt
- Pole of Rheumatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
11
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Powell KM, Skaggs C, Pulliam A, Berman A, Allen MR, Wallace JM. Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone. Bone 2019; 127:199-206. [PMID: 31233931 PMCID: PMC7036744 DOI: 10.1016/j.bone.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023]
Abstract
Current interventions to reduce skeletal fragility are insufficient at enhancing both the quantity and quality of bone when attempting to improve overall mechanical integrity. Bisphosphonates, such as Zoledronate (ZOL), are used to treat a variety of bone disorders by increasing bone mass to decrease fracture risk, but long-term use has been shown in some settings to compromise bone quality. Alternatively, Raloxifene (RAL) has recently been demonstrated to improve tissue quality and overall mechanical properties in a cell-independent manner by binding to collagen and increasing tissue hydration. We hypothesized that a combination of RAL and ZOL would improve mechanical and material properties of bone more than either monotherapy alone by enhancing both quantity and quality. In this study, wildtype (WT) and heterozygous (OIM+/-) male mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL, ZOL, or both from 8 weeks to 16 weeks of age. Using the OIM model allows for investigation of therapeutic effects on a quality-based bone disease. Combination treatment resulted in higher trabecular architecture, cortical mechanical properties, and cortical fracture toughness in diseased mouse bone. Two fracture toughness properties, which are direct measures of the tissue's ability to resist the initiation and propagation of a crack, were significantly improved with combination treatment in OIM+/- compared to control. There was no significant effect on fracture toughness with either monotherapy alone in either genotype. Following the mass-based effects of ZOL, trabecular bone volume fraction was significantly higher with combination treatment in both genotypes. Combination treatment resulted in higher ultimate stress in both genotypes. RAL and combination treatment in OIM+/- also increased resilience compared to the control. In conclusion, this study demonstrates the beneficial effects of using combination drug treatments to increase bone mass while simultaneously improving tissue quality, especially to enhance the mechanical integrity of diseased bone. Combination therapies could be a potential method to improve bone health and combat skeletal fragility on both the microscopic and macroscopic levels.
Collapse
Affiliation(s)
- Katherine M Powell
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Cayla Skaggs
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alexis Pulliam
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alycia Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Cardinal M, Tys J, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH. Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone 2019; 124:137-147. [PMID: 31051315 DOI: 10.1016/j.bone.2019.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Abstract
Osteogenesis imperfecta type III (OI) is a serious genetic condition with poor bone quality and a high fracture rate in children. In a previous study, it was shown that a monoclonal antibody neutralizing sclerostin (Scl-Ab) increases strength and vertebral bone mass while reducing the number of axial fractures in oim/oim, a mouse model of OI type III. Here, we analyze the impact of Scl-Ab on long bones in OI mice. After 9 weeks of treatment, Scl-Ab significantly reduced long bone fractures (3.6 ± 0.3 versus 2.1 ± 0.8 per mouse, p < 0.001). In addition, the cortical thickness of the tibial midshaft was increased (+42%, p < 0.001), as well as BMD (+28%, p < 0.001), ultimate load (+86%, p < 0.05), plastic energy (+184%; p < 0.05) and stiffness (+172%; p < 0.01) in OI Scl-Ab mice compared to OI vehicle controls. Similar effects of Scl-Ab were observed in Wild type (Wt) mice. The plastic energy, which reflects the fragility of the tissue, was lower in the OI than in the Wt and significantly improved with the Scl-Ab treatment. At the tissue level by nanoindentation, Scl-Ab slightly increased the elastic modulus in bones of both OI and Wt, while moderately increasing tissue hardness (+13% compared to the vehicle; p < 0.05) in Wt bones, but not in OI bones. Although it did not change the properties of the OI bone matrix material, Scl-Ab reduced the fracture rate of the long bones by improving its bone mass, density, geometry, and biomechanical strength. These results suggest that Scl-Ab can reduce long-bone fractures in patients with OI.
Collapse
Affiliation(s)
- Mickaël Cardinal
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Janne Tys
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Thomas Roels
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Sébastien Lafont
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Michael S Ominsky
- Radius, Inc., Waltham, MA, USA, formerly at Amgen Inc, Thousand Oaks, CA, USA.
| | - Jean-Pierre Devogelaer
- Pole of Rheumatic Pathologies, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | | | | | - Patrick Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland.
| | - Catherine Nyssen-Behets
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Daniel H Manicourt
- Pole of Rheumatic Pathologies, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
14
|
Brunetti G, D'Amato G, Chiarito M, Tullo A, Colaianni G, Colucci S, Grano M, Faienza MF. An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J Pediatr 2019; 15:4-11. [PMID: 30343446 DOI: 10.1007/s12519-018-0198-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/β-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/β-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies. DATA SOURCES The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria. RESULTS We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader-Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed. CONCLUSIONS The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | | | - Mariangela Chiarito
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, 70126, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
15
|
Besio R, Maruelli S, Battaglia S, Leoni L, Villani S, Layrolle P, Rossi A, Trichet V, Forlino A. Early Fracture Healing is Delayed in the Col1a2 +/G610C Osteogenesis Imperfecta Murine Model. Calcif Tissue Int 2018; 103:653-662. [PMID: 30076439 DOI: 10.1007/s00223-018-0461-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable skeletal dysplasia mainly caused by type I collagen abnormalities and characterized by bone fragility and susceptibility to fracture. Over 85% of the patients carry dominant mutations in the genes encoding for the collagen type I α1 and α2 chains. Failure of bone union and/or presence of hyperplastic callus formation after fracture were described in OI patients. Here we used the Col1a2+/G610C mouse, carrying in heterozygosis the α2(I)-G610C substitution, to investigate the healing process of an OI bone. Tibiae of 2-month-old Col1a2+/G610C and wild-type littermates were fractured and the healing process was followed at 2, 3, and 5 weeks after injury from fibrous cartilaginous tissue formation to its bone replacement by radiography, micro-computed tomography (µCT), histological and biochemical approaches. In presence of similar fracture types, in Col1a2+/G610C mice an impairment in the early phase of bone repair was detected compared to wild-type littermates. Smaller callus area, callus bone surface, and bone volume associated to higher percentage of cartilage and lower percentage of bone were evident in Col1a2+/G610C at 2 weeks post fracture (wpf) and no change by 3 wpf. Furthermore, the biochemical analysis of collagen extracted from callus 2 wpf revealed in mutants an increased amount of type II collagen, typical of cartilage, with respect to type I, characteristic of bone. This is the first report of a delay in OI bone fracture repair at the modeling phase.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Silvia Maruelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Severine Battaglia
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Laura Leoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Valerie Trichet
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| |
Collapse
|
16
|
Zimmerman SM, Heard-Lipsmeyer ME, Dimori M, Thostenson JD, Mannen EM, O'Brien CA, Morello R. Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim). Bone Rep 2018; 9:61-73. [PMID: 30105276 PMCID: PMC6077550 DOI: 10.1016/j.bonr.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by osteopenia and bone fragility, and OI patients during growth often exhibit high bone turnover with the net result of low bone mass. Recent evidence shows that osteocytes significantly affect bone remodeling under physiological and pathological conditions through production of osteoclastogenic cytokines. The receptor activator of nuclear factor kappa-B ligand (RANKL) produced by osteocytes for example, is a critical mediator of bone loss caused by ovariectomy, low-calcium diet, unloading and glucocorticoid treatment. Because OI bone has increased density of osteocytes and these cells are embedded in matrix with abnormal type I collagen, we hypothesized that osteocyte-derived RANKL contributes to the OI bone phenotype. In this study, the conditional loss of RANKL in osteocytes in oim/oim mice (oim-RANKL-cKO) resulted in dramatically increased cancellous bone mass in both the femur and lumbar spine compared to oim/oim mice. Bone cortical thickness increased significantly only in spine but ultimate bone strength in the long bone and spine was minimally improved in oim-RANKL-cKO mice compared to oim/oim mice. Furthermore, unlike previous findings, we report that oim/oim mice do not exhibit high bone turnover suggesting that their low bone mass is likely due to defective bone formation and not increased bone resorption. The loss of osteocyte-derived RANKL further diminished parameters of formation in oim-RANKL-cKO. Our results indicate that osteocytes contribute significantly to the low bone mass observed in OI and the effect of loss of RANKL from these cells is similar to its systemic inhibition. Osteocyte-specific deletion of RANKL in oim mice greatly increases cancellous bone. Skeletal effects of osteocyte RANKL deletion on OI mimic its systemic inhibition. Oim mice do not have high bone turnover. Low bone mass in oim mice is primarily caused by decreased bone formation. This study supports a potentially important role for osteocytes in OI.
Collapse
Affiliation(s)
- Sarah M. Zimmerman
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Melissa E. Heard-Lipsmeyer
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jeff D. Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Erin M. Mannen
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Charles A. O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Corresponding author at: Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., #505, Little Rock, AR 72205-7199, United States of America.
| |
Collapse
|
17
|
Rajapakse CS, Padalkar MV, Yang HJ, Ispiryan M, Pleshko N. Non-destructive NIR spectral imaging assessment of bone water: Comparison to MRI measurements. Bone 2017; 103:116-124. [PMID: 28666972 PMCID: PMC5572678 DOI: 10.1016/j.bone.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/07/2017] [Accepted: 06/21/2017] [Indexed: 01/22/2023]
Abstract
Bone fracture risk increases with age, disease states, and with use of certain therapeutics, such as acid-suppressive drugs, steroids and high-dose bisphosphonates. Historically, investigations into factors that underlie bone fracture risk have focused on evaluation of bone mineral density (BMD). However, numerous studies have pointed to factors other than BMD that contribute to fragility, including changes in bone collagen and water. The goal of this study is to investigate the feasibility of using near infrared spectral imaging (NIRSI) to determine the spatial distribution and relative amount of water and organic components in whole cross-sections of bone, and to compare those results to those obtained using magnetic resonance imaging (MRI) methods. Cadaver human whole-section tibiae samples harvested from 18 donors of ages 27-97years underwent NIRSI and ultrashort echo time (UTE) MRI. As NIRSI data is comprised of broad absorbances, second derivative processing was evaluated as a means to narrow peaks and obtain compositional information. The (inverted) second derivative peak heights of the NIRSI absorbances correlated significantly with the mean peak integration of the water, collagen and fat NIR absorbances, respectively, indicating that either processing method could be used for compositional assessment. The 5797cm-1 absorbance was validated as arising from the fat present in bone marrow, as it completely disappeared after ultrasonication. The MRI UTE-determined bound water content in tibial cortical bone samples ranged from 62 to 91%. The NIRSI water peaks at 5152cm-1 and at 7008cm-1 correlated significantly with the UTE data, with r=0.735, p=0.016, and r=0.71, p=0.0096, respectively. There was also a strong correlation between the intensity of the NIRSI water peak at 7008cm-1 and the intensity of the collagen peak at 4608cm-1 (r=0.69, p=0.004). Since NIRSI requires minimal to no sample preparation, this approach has great potential to become a gold standard modality for the investigation of changes in water content, distribution, and environment in pre-clinical studies of bone pathology and therapeutics.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Mugdha V Padalkar
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Hee Jin Yang
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Mikayel Ispiryan
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Matthews BG, Roeder E, Wang X, Aguila HL, Lee SK, Grcevic D, Kalajzic I. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine. Bone 2017; 103:1-11. [PMID: 28600151 PMCID: PMC5764163 DOI: 10.1016/j.bone.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/14/2017] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b+) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA.
| | - Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA
| | - Xi Wang
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA
| | | | - Sun-Kyeong Lee
- Center on Aging, University of Connecticut, Farmington, CT 06030, USA
| | - Danka Grcevic
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA.
| |
Collapse
|
19
|
Little DG, Peacock L, Mikulec K, Kneissel M, Kramer I, Cheng TL, Schindeler A, Munns C. Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta. Bone 2017; 101:96-103. [PMID: 28461254 DOI: 10.1016/j.bone.2017.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios.
Collapse
Affiliation(s)
- David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| | - Lauren Peacock
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Kathy Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Michaela Kneissel
- Bone Unit, Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Bone Unit, Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tegan L Cheng
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Craig Munns
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Marom R, Lee YC, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:367-383. [PMID: 27813341 DOI: 10.1002/ajmg.c.31532] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a connective tissue disorder characterized by bone fragility, low bone mass, and bone deformities. The majority of cases are caused by autosomal dominant pathogenic variants in the COL1A1 and COL1A2 genes that encode type I collagen, the major component of the bone matrix. The remaining cases are caused by autosomal recessively or dominantly inherited mutations in genes that are involved in the post-translational modification of type I collagen, act as type I collagen chaperones, or are members of the signaling pathways that regulate bone homeostasis. The main goals of treatment in OI are to decrease fracture incidence, relieve bone pain, and promote mobility and growth. This requires a multi-disciplinary approach, utilizing pharmacological interventions, physical therapy, orthopedic surgery, and monitoring nutrition with appropriate calcium and vitamin D supplementation. Bisphosphonate therapy, which has become the mainstay of treatment in OI, has proven beneficial in increasing bone mass, and to some extent reducing fracture risk. However, the response to treatment is not as robust as is seen in osteoporosis, and it seems less effective in certain types of OI, and in adult OI patients as compared to most pediatric cases. New pharmacological treatments are currently being developed, including anti-resorptive agents, anabolic treatment, and gene- and cell-therapy approaches. These therapies are under different stages of investigation from the bench-side, to pre-clinical and clinical trials. In this review, we will summarize the recent findings regarding the pharmacological and biological strategies for the treatment of patients with OI. © 2016 Wiley Periodicals, Inc.
Collapse
|
21
|
Raggio CL, Pleshko N, Boskey AL. The Effect of Stontium Ranelate on Fracture Reduction in Osteogenesis Imperfecta is Comparable to Recent Bisphosphonate Data. J Bone Miner Res 2016; 31:2065. [PMID: 27541299 DOI: 10.1002/jbmr.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Cathleen L Raggio
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, NY, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
22
|
Shi C, Hu B, Guo L, Cao P, Tian Y, Ma J, Chen Y, Wu H, Hu J, Deng L, Zhang Y, Yuan W. Response to Comment on Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:2066. [PMID: 27541073 DOI: 10.1002/jbmr.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Changgui Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Bo Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanhai, People's Republic of China
| | - Peng Cao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Ye Tian
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuanyuan Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Huiqiao Wu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jinquan Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanhai, People's Republic of China
| | - Ying Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wen Yuan
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Enderli TA, Burtch SR, Templet JN, Carriero A. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 2016; 8:41-55. [PMID: 30774469 PMCID: PMC6209373 DOI: 10.2147/orr.s85198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin) and mechanical (ie, vibrational) loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients.
Collapse
Affiliation(s)
- Tanya A Enderli
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Stephanie R Burtch
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Jara N Templet
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Alessandra Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| |
Collapse
|
24
|
Brunetti G, Papadia F, Tummolo A, Fischetto R, Nicastro F, Piacente L, Ventura A, Mori G, Oranger A, Gigante I, Colucci S, Ciccarelli M, Grano M, Cavallo L, Delvecchio M, Faienza MF. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int 2016; 27:2355-2365. [PMID: 26856585 DOI: 10.1007/s00198-016-3501-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. INTRODUCTION Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. METHODS Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. RESULTS DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. CONCLUSIONS Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects with OI untreated and treated with bisphosphonates. These cytokines could represent new pharmacological targets for OI patients.
Collapse
Affiliation(s)
- G Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - F Papadia
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - A Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - R Fischetto
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - F Nicastro
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - L Piacente
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - A Ventura
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - G Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - A Oranger
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Gigante
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - M Ciccarelli
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Grano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Cavallo
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Delvecchio
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
25
|
Dela Cruz A, Grynpas MD, Mitchell J. Elevated Gα11 expression in osteoblast lineage cells promotes osteoclastogenesis and leads to enhanced trabecular bone accrual in response to pamidronate. Am J Physiol Endocrinol Metab 2016; 310:E811-20. [PMID: 27006198 DOI: 10.1152/ajpendo.00049.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
Osteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg). G11-Tg cocultures had elevated osteoclast numbers with greater resorptive capacity and increased expression of Rankl, Rankl:Opg (osteoprotegerin), and M-csf compared with cocultures with WT BMSCs. As well, cocultures with G11-Tg BMSCs required a higher concentration of OPG to inhibit osteoclast formation and less angiotensin II to increase osteoclast size. These indicate that G11-Tg osteoblasts drive the increased osteoclast formation and osteopenia seen in G11-Tg mice. Pamidronate treatment of G11-Tg mice restored the trabecular bone loss phenotype, as bone mineral density, bone volume, trabecular number, separation, and expressions of osteoblastic and osteoclastic genes were comparable with WT parameters. These changes were characterized by enhanced accumulation of calcified cartilage in trabecular bone, demonstrating that resorption of the cartilaginous intermediate by osteoclasts is more affected by bisphosphonate treatment in G11-Tg mice. In conclusion, overexpression of Gα11 in osteoblastic cells promotes osteoclastogenesis by upregulation of Rankl and M-csf and bone loss by increased osteoclast resorption of the trabecular bone and cartilaginous matrix.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada;
| |
Collapse
|
26
|
Shi C, Hu B, Guo L, Cao P, Tian Y, Ma J, Chen Y, Wu H, Hu J, Deng L, Zhang Y, Yuan W. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:1003-14. [PMID: 26679066 DOI: 10.1002/jbmr.2770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/08/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Bo Hu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Peng Cao
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Ye Tian
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuanyuan Chen
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Huiqiao Wu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jinquan Hu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Zhang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Abstract
Osteogenesis imperfecta (OI) is a rare disorder of type 1 collagen with 13 currently identified types attributable to inherited abnormalities in type 1 collagen amount, structure, or processing. The disease is characterized by an increased susceptibility to bony fracture. In addition to the skeletal phenotype, common additional extraskeletal manifestations include blue sclerae, dentinogenesis imperfecta, vascular fragility, and hearing loss. Medical management is focused on minimizing the morbidity of fractures, pain, and bone deformities by maximizing bone health. Along with optimizing Vitamin D status and calcium intake and physical/occupational therapy, individualized surgical treatment may be indicated. Pharmacological therapy with bisphosphonate medications is now routinely utilized for moderate to severe forms and appears to have a good safety profile and bone health benefits. New therapies with other anti-resorptives as well as anabolic agents and transforming growth factor (TGF)β antibodies are in development. Other potential treatment modalities could include gene therapy or mesenchymal cell transplant. In the future, treatment choices will be further individualized in order to reduce disease morbidity and mortality.
Collapse
Affiliation(s)
- Inas H Thomas
- Section of Pediatric Endocrinology, School of Medicine, University of Michigan, 1500 E. Medical Center Dr., D1205 MPB, SPC 5718, Ann Arbor, MI, 48109, USA.
| | - Linda A DiMeglio
- Section of Pediatric Endocrinology/Diabetology, School of Medicine, Indiana University, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
28
|
Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol 2015; 52-54:19-28. [PMID: 26707242 DOI: 10.1016/j.matbio.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI.
Collapse
Affiliation(s)
- Alycia G Berman
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary R Bart
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
29
|
De Almeida J, Ervolino E, Bonfietti LH, Novaes VCN, Theodoro LH, Fernandes LA, Martins TM, Faleiros PL, Garcia VG. Adjuvant Therapy With Sodium Alendronate for the Treatment of Experimental Periodontitis in Rats. J Periodontol 2015; 86:1166-75. [DOI: 10.1902/jop.2015.150166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Are Changes in Composition in Response to Treatment of a Mouse Model of Osteogenesis Imperfecta Sex-dependent? Clin Orthop Relat Res 2015; 473:2587-98. [PMID: 25903941 PMCID: PMC4488219 DOI: 10.1007/s11999-015-4268-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a genetic disease characterized by skeletal fragility and deformity. There is extensive debate regarding treatment options in adults with OI. Antiresorptive treatment reduces the number of fractures in growing oim/oim mice, an animal model that reproducibly mimics the moderate-to-severe form of OI in humans. Effects of long-term treatments with antiresorptive agents, considered for treatment of older patients with OI with similar presentation (moderate-to-severe OI) are, to date, unknown. QUESTIONS/PURPOSES Fourier transform infrared (FTIR) imaging, which produces a map of the spatial variation in chemical composition in thin sections of bone, was used to address the following questions: (1) do oim/oim mice show a sex dependence in compositional properties at 6.5 months of age; (2) is there a sex-dependent response to treatment with antiresorptive agents used in the treatment of OI in humans; and (3) are any compositional parameters in oim/oim mice corrected to wild-type (WT) values after treatment? METHODS FTIR imaging data were collected from femurs from four to five mice per sex per genotype per treatment. Treatments were 24 weeks of saline, alendronate, or RANK-Fc; and 12 weeks of saline+12 weeks RANK-Fc and 12 weeks of alendronate+RANK-Fc. FTIR imaging compositional parameters measured in cortical and cancellous bones were mineral-to-matrix ratio, carbonate-to-mineral ratio, crystal size/perfection, acid phosphate substitution, collagen maturity, and their respective distributions (heterogeneities). Because of the small sample size, nonparametric statistics (Mann-Whitney U- and Kruskal-Wallis tests with Bonferroni correction) were used to compare saline-treated male and female mice of different genotypes and treatment effects by sex and genotype, respectively. Statistical significance was defined as p<0.05. RESULTS At 6.5 months, saline-treated male cortical oim/oim bone had increased mineral-to-matrix ratio (p=0.016), increased acid phosphate substitution (p=0.032), and decreased carbonate-to-mineral ratio (p=0.016) relative to WT. Cancellous bone in male oim/oim also had increased mineral-to-matrix ratio (p=0.016) relative to male WT. Female oim/oim mouse bone composition for all cortical and cancellous bone parameters was comparable to WT (p>0.05). Only the female WT mice showed a response of mean compositional properties to treatment, increasing mineral-to-matrix after RANK-Fc treatment in cancellous bone (p=0.036) compared with saline-treated mice. Male oim/oim increased mineral-to-matrix cortical and cancellous bone heterogeneity in response to all long-term treatments except for saline+RANK-Fc (p<0.04); female oim/oim cortical mineral-to-matrix bone heterogeneity increased with ALN+RANK-Fc and all treatments increased cancellous female oim/oim bone acid phosphate substitution heterogeneity (p<0.04). CONCLUSIONS Both oim/oim and WT mice, which demonstrate sex-dependent differences in composition with saline treatment, showed few responses to long-term treatment with antiresorptive agents. Female WT mice appeared to be more responsive; male oim/oim mice showed more changes in compositional heterogeneity. Changes in bone composition caused by these agents may contribute to improved bone quality in oim/oim mice, because the treatments are known to reduce fracture incidence. CLINICAL RELEVANCE The optimal drug therapy for long-term treatment of patients with moderate-to-severe OI is unknown. Based on bone compositional changes in mice, antiresorptive treatments are useful for continued treatment in OI. There is a reported sexual dimorphism in fracture incidence in adults with OI, but to date, no one has reported differences in response to pharmaceutical intervention. This study suggests that such an investigation is warranted.
Collapse
|
31
|
Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin North Am 2014; 61:1243-57. [PMID: 25439022 DOI: 10.1016/j.pcl.2014.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that presents with a wide clinical phenotype spectrum: from perinatal lethality and severe deformities to very mild forms without fractures. Most cases of OI are due to autosomal dominant mutations of the type I collagen genes. A multidisciplinary approach with rehabilitation, orthopedic surgery, and consideration of medical therapy with bisphosphonates underpins current management. Greater understanding of the pathogenesis of OI may lead to novel, therapeutic approaches to help improve clinical symptoms of children with OI in the future.
Collapse
Affiliation(s)
- Jennifer Harrington
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Etienne Sochett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Andrew Howard
- Division of Orthopedic Surgery, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
32
|
Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670842. [PMID: 25530967 PMCID: PMC4230237 DOI: 10.1155/2014/670842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/12/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.
Collapse
|
33
|
Capulli M, Olstad OK, Onnerfjord P, Tillgren V, Muraca M, Gautvik KM, Heinegård D, Rucci N, Teti A. The C-terminal domain of chondroadherin: a new regulator of osteoclast motility counteracting bone loss. J Bone Miner Res 2014; 29:1833-46. [PMID: 24616121 DOI: 10.1002/jbmr.2206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 11/12/2022]
Abstract
Chondroadherin (CHAD) is a leucine-rich protein promoting cell attachment through binding to integrin α2 β1 and syndecans. We observed that CHAD mRNA and protein were lower in bone biopsies of 50-year-old to 65-year-old osteoporotic women and in bone samples of ovariectomized mice versus gender/age-matched controls, suggesting a role in bone metabolism. By the means of an internal cyclic peptide (cyclicCHAD), we observed that its integrin binding sequence impaired preosteoclast migration through a nitric oxide synthase 2-dependent mechanism, decreasing osteoclastogenesis and bone resorption in a concentration-dependent fashion, whereas it had no effect on osteoblasts. Consistently, cyclicCHAD reduced transcription of two nitric oxide downstream genes, migfilin and vasp, involved in cell motility. Furthermore, the nitric oxide donor, S-nitroso-N-acetyl-D,L-penicillamine, stimulated preosteoclast migration and prevented the inhibitory effect of cyclicCHAD. Conversely, the nitric oxide synthase 2 (NOS2) inhibitor, N5-(1-iminoethyl)-l-ornithine, decreased both preosteoclast migration and differentiation, confirming a role of the nitric oxide pathway in the mechanism of action triggered by cyclicCHAD. In vivo, administration of cyclicCHAD was well tolerated and increased bone volume in healthy mice, with no adverse effect. In ovariectomized mice cyclicCHAD improved bone mass by both a preventive and a curative treatment protocol, with an effect in line with that of the bisphosphonate alendronate, that was mimicked by the NOS2 inhibitor [L-N6-(1-Iminoethyl)-lysine.2 dihydrochloride]. In both mouse models, cyclicCHAD reduced osteoclast and bone resorption without affecting osteoblast parameters and bone formation. In conclusion, CHAD is a novel regulator of bone metabolism that, through its integrin binding domain, inhibits preosteoclast motility and bone resorption, with a potential translational impact for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yao X, Carleton SM, Kettle AD, Melander J, Phillips CL, Wang Y. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model. Ann Biomed Eng 2013; 41:1139-49. [PMID: 23536112 DOI: 10.1007/s10439-013-0793-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.
Collapse
Affiliation(s)
- Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E. 25th St., Kansas City, MO 64108, USA
| | | | | | | | | | | |
Collapse
|
35
|
Bargman R, Posham R, Boskey A, Carter E, DiCarlo E, Verdelis K, Raggio C, Pleshko N. High- and low-dose OPG-Fc cause osteopetrosis-like changes in infant mice. Pediatr Res 2012; 72:495-501. [PMID: 22926546 PMCID: PMC3888234 DOI: 10.1038/pr.2012.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Receptor activator of nuclear factor-κB ligand (RANKL) inhibitors are being considered for use in children with osteogenesis imperfecta (OI). We sought to assess efficacy of two doses of a RANKL inhibitor, osteoprotegerin-immunoglobulin Fc segment complex (OPG-Fc), in a growing animal model of OI, the col1α2-deficient mouse (oim/oim) and its wild-type controls (+/+). METHODS Treated mice showed runting and radiographic evidence of osteopetrosis with either high- (20 mg/kg twice weekly) or low-dose (1 mg/kg/week) OPG-Fc. Because of this adverse event, OPG-Fc treatment was halted, and the mice were killed or monitored for recovery with monthly radiographs and assessment of serum osteoclast activity (tartrate-resistant acid phosphatase 5b, TRACP-5b) until 25 wk of age. RESULTS Twelve weeks of OPG-Fc treatment resulted in radiographic and histologic osteopetrosis with no evidence of bone modeling and negative tartrate-resistant acid phosphatase staining, root dentin abnormalities, and TRACP-5b activity suppression. Signs of recovery appeared 4-8 wk post-treatment. CONCLUSION Both high- and low-dose OPG-Fc treatment resulted in osteopetrotic changes in infant mice, an outcome that was not seen in studies with the RANKL inhibitor RANK-immunoglobulin Fc segment complex (RANK-Fc) or in studies with older animals. Further investigations of RANKL inhibitors are necessary before their consideration for use in children.
Collapse
Affiliation(s)
- Renee Bargman
- NYPH-Weill Cornell Medical Center, New York, NY, USA 10021,Nassau University Medical Center, East Meadow, NY, USA 11554
| | - Ram Posham
- Hospital for Special Surgery, New York, NY, USA 10021
| | - Adele Boskey
- Hospital for Special Surgery, New York, NY, USA 10021,Weill Medical College of Cornell University, New York, NY, USA 10021
| | - Erin Carter
- Hospital for Special Surgery, New York, NY, USA 10021
| | | | | | | | - Nancy Pleshko
- Hospital for Special Surgery, New York, NY, USA 10021,Temple University, Philadelphia, PA, USA 19122,Address for Correspondence: Temple University Dept. of Bioengineering 1947 N. 12th St. Philadelphia, PA 19122 Tel number (215) 204-4280, Fax number (215) 204-4956
| |
Collapse
|
36
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e31826b35c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Lv HS, Han QQ, Ding XL, Zhou JL, Yang PS, Miao JY, Zhao BX. Synthesis and Discovery of Novel Pyrazole Carboxamide Derivatives as Potential Osteogenesis Inducers. Arch Pharm (Weinheim) 2012; 345:870-7. [DOI: 10.1002/ardp.201200180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 11/06/2022]
|