1
|
Cirovic A, Schmidt FN, Vujacic M, Sihota P, Petrovic B, Zivkovic V, Bascarevic Z, Nikolic S, Djonic D, Djuric M, Busse B, Milovanovic P. Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk. JBMR Plus 2024; 8:ziae005. [PMID: 38741606 PMCID: PMC11090112 DOI: 10.1093/jbmrpl/ziae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2024] [Accepted: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
There is still limited understanding of the microstructural reasons for the higher susceptibility to fractures in individuals with type 2 diabetes mellitus (T2DM). In this study, we examined bone mineralization, osteocyte lacunar parameters, and microhardness of the femoral neck trabeculae in 18 individuals with T2DM who sustained low-energy fracture (T2DMFx: 78 ± 7 years, 15 women and 3 men) and 20 controls (74 ± 7 years, 16 women and 4 men). Femoral necks of the T2DMFx subjects were obtained at a tertiary orthopedic hospital, while those of the controls were collected at autopsy. T2DMFx individuals had lower trabecular microhardness (P = .023) and mineralization heterogeneity (P = .001), and a tendency to a lower bone area with mineralization above 95th percentile (P = .058) than the controls. There were no significant intergroup differences in the numbers of osteocyte lacunae per bone area, mineralized lacunae per bone area, and total lacunae per bone area (each P > .05). After dividing the T2DMFx group based on the presence of vascular complications (VD) to T2DMFxVD (VD present) and T2DMFxNVD (VD absent), we observed that microhardness was particularly reduced in the T2DMFxVD group (vs. control group, P = .02), while mineralization heterogeneity was significantly reduced in both T2DMFx subgroups (T2DMFxNVD vs. control, P = .002; T2DMFxVD vs. control, P = .038). The observed changes in mineralization and microhardness may contribute to the increased hip fracture susceptibility in individuals with T2DM.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Marko Vujacic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bojan Petrovic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Vladimir Zivkovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Zoran Bascarevic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Blouin S, Misof BM, Mähr M, Fratzl-Zelman N, Roschger P, Lueger S, Messmer P, Keplinger P, Rauch F, Glorieux FH, Berzlanovich A, Gruber GM, Brugger PC, Shane E, Recker RR, Zwerina J, Hartmann MA. Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater 2023; 157:275-287. [PMID: 36549635 DOI: 10.1016/j.actbio.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.
Collapse
Affiliation(s)
- Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria.
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Matthias Mähr
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Sonja Lueger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Petra Keplinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter C Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, USA
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
3
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
4
|
Rokidi S, Bravenboer N, Gamsjaeger S, Misof B, Blouin S, Chavassieux P, Klaushofer K, Paschalis E, Papapoulos S, Appelman-Dijkstra N. Impact microindentation assesses subperiosteal bone material properties in humans. Bone 2020; 131:115110. [PMID: 31655220 DOI: 10.1016/j.bone.2019.115110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/14/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Impact microindentation (IMI) is a Reference Point Indentation technique measuring tissue-level properties of cortical bone in humans in vivo. The nature, however, of the properties that can affect bone strength is incompletely understood. In the present study we examined bone material properties in transiliac bone biopsies obtained concurrently with measurements of Bone Material Strength index (BMSi) by IMI in 12 patients with different skeletal disorders and a wide range of BMD, with or without fractures (8 males, 4 females, mean age 48±12.2 (SD) years, range 15-60 years). IMI was performed in the mid-shaft of the right tibia with a hand-held microindenter (OsteoProbe). Cancellous and cortical bone mineralization density distributions (BMDD) were measured in the entire biopsy bone area by quantitative backscattered electron imaging. Raman measurements were obtained right at the outer edge of the cortex, and 5, 50, 100, 500μm inwards. The calculated parameters were: i) Mineral and organic matrix content as well as the mineral / matrix ratio. ii) Nanoporosity. iii) Glycosaminoglycan content. iv) Pyridinoline content. v) Maturity/crystallinity of the apatite crystallites. There was no relationship between BMSi values with any measurement of mineral content of whole bone tissue (BMD, BMDD) or maturity/crystallinity of bone mineral. On the other hand, a positive correlation between BMSi and local mineral content, and an inverse correlation between BMSi and nanoporosity at the mineralized subperiosteal edge of the sample and at 5μm inwards was found. A positive correlation was also observed between BMSi and pyridinoline content at the same locations. These results indicate that local mineral content, nanoporosity and pyridinoline content at the subperiosteal site in the transiliac bone biopsy are linked to the BMSi values measured in the tibia. As both high porosity at the nano level and low pyridinoline content of the bone matrix can negatively impact bone strength, our findings suggest that BMSi most likely assesses subperiosteal bone material properties.
Collapse
Affiliation(s)
- Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Natalie Bravenboer
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Barbara Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | | | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Eleftherios Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria.
| | - Socrates Papapoulos
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
5
|
Farlay D, Bala Y, Rizzo S, Bare S, Lappe JM, Recker R, Boivin G. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone 2019; 128:115030. [PMID: 31404670 DOI: 10.1016/j.bone.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/23/2023]
Abstract
Acceleration of remodeling activity after menopause leads to bone loss and fragility, however, whether this is associated with modifications of bone matrix quality has been less studied. The impact of variation in bone remodeling rate on bone matrix has been studied mainly in pathologies or anti-osteoporotic treatments. However, in healthy women this has been less studied. We analyzed, at the global level, bone matrix quality in bone biopsies from 3 groups of healthy women (20 per group): 1) before menopause (PreM), 2) 1 year after menopause (PostM, paired biopsies with preM), and 3) 14 (±9) years after menopause (LT-PostM). The mean degree of mineralization (DMB) and heterogeneity index (HI) of mineralization were assessed by X-ray microradiography on whole bone matrix; intrinsic properties (mineral/organic ratio, mineral maturity, mineral crystallinity, collagen maturity) were assessed by Fourier Transform Infrared microspectroscopy, microhardness by microindentation, both at a global level and calculated by mean of several measurements over the whole tissue area. In PostM compared to PreM (bone remodeling rate had doubled), mean DMB measured on the entire bone plane (whole bone matrix) of the sample was not different. HI was increased in trabecular bone indicating a higher heterogeneity of mineralization. However, in PostM, mineral/organic ratio (trabecular) and microhardness (cortical and trabecular) were decreased, whereas mineral/collagen maturation or crystal size/perfection were unchanged. Thus, in PostM, the local mineral content and microhardness were first affected. In LT-PostM (bone remodeling rate was 3 times higher), the mean DMB was still not different. However, the mineral/organic ratio, microhardness, mineral maturity, crystallinity all were lower compared to PreM and PostM, in both cortical and trabecular bone. Bone remodeling rate was negatively correlated with microhardness, DMB, mineral/organic and crystallinity. This suggests that increases in bone remodeling rates after menopause have a direct impact on bone quality by inducing the formation of more extensive "immature" bone areas, but the amount of immature bone does not cause modification of the global DMB.
Collapse
Affiliation(s)
- D Farlay
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France.
| | - Y Bala
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| | - S Rizzo
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| | - S Bare
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - J M Lappe
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - R Recker
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - G Boivin
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| |
Collapse
|
6
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|