1
|
Baraghithy S, Smoum R, Drori A, Hadar R, Gammal A, Hirsch S, Attar-Namdar M, Nemirovski A, Gabet Y, Langer Y, Pollak Y, Schaaf CP, Rech ME, Gross-Tsur V, Bab I, Mechoulam R, Tam J. Magel2 Modulates Bone Remodeling and Mass in Prader-Willi Syndrome by Affecting Oleoyl Serine Levels and Activity. J Bone Miner Res 2019; 34:93-105. [PMID: 30347474 DOI: 10.1002/jbmr.3591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/30/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Among a multitude of hormonal and metabolic complications, individuals with Prader-Willi syndrome (PWS) exhibit significant bone abnormalities, including decreased BMD, osteoporosis, and subsequent increased fracture risk. Here we show in mice that loss of Magel2, a maternally imprinted gene in the PWS critical region, results in reduced bone mass, density, and strength, corresponding to that observed in humans with PWS, as well as in individuals suffering from Schaaf-Yang syndrome (SYS), a genetic disorder caused by a disruption of the MAGEL2 gene. The low bone mass phenotype in Magel2-/- mice was attributed to reduced bone formation rate, increased osteoclastogenesis and osteoclast activity, and enhanced trans-differentiation of osteoblasts to adipocytes. The absence of Magel2 in humans and mice resulted in reduction in the fatty acid amide bone homeostasis regulator, N-oleoyl serine (OS), whose levels were positively linked with BMD in humans and mice as well as osteoblast activity. Attenuating the skeletal abnormalities in Magel2-/- mice was achieved with chronic administration of a novel synthetic derivative of OS. Taken together, Magel2 plays a key role in modulating bone remodeling and mass in PWS by affecting OS levels and activity. The use of potent synthetic analogs of OS should be further tested clinically as bone therapeutics for treating bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reem Smoum
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Hirsch
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malka Attar-Namdar
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yshaia Langer
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yehuda Pollak
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Christian Patrick Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Megan Elizabeth Rech
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Varda Gross-Tsur
- Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Itai Bab
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Penner J, Ferrand RA, Richards C, Ward KA, Burns JE, Gregson CL. The impact of vitamin D supplementation on musculoskeletal health outcomes in children, adolescents, and young adults living with HIV: A systematic review. PLoS One 2018; 13:e0207022. [PMID: 30439968 PMCID: PMC6237309 DOI: 10.1371/journal.pone.0207022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE HIV-positive children, adolescents, and young adults are at increased risk poor musculoskeletal outcomes. Increased incidence of vitamin D deficiency in youth living with HIV may further adversely affect musculoskeletal health. We investigated the impact of vitamin D supplementation on a range of musculoskeletal outcomes among individuals aged 0-25 years living with HIV. METHODS A systematic review was conducted using databases: PubMed/Medline, CINAHL, Web of Knowledge, and EMBASE. Interventional randomised control trials, quasi-experimental trials, and previous systematic reviews/meta-analyses were included. Outcomes included: BMD, BMC, fracture incidence, muscle strength, linear growth (height-for-age Z-score [HAZ]), and biochemical/endocrine biomarkers including bone turnover markers. RESULTS Of 497 records, 20 studies met inclusion criteria. Thirteen studies were conducted in North America, one in Asia, two in Europe, and four in Sub-Saharan Africa. High-dose vitamin D supplementation regimens (1,000-7,000 IU/day) were successful in achieving serum 25-hydroxyvitamin-D (25OHD) concentrations above study-defined thresholds. No improvements were observed in BMD, BMC, or in muscle power, force and strength; however, improvements in neuromuscular motor skills were demonstrated. HAZ was unaffected by low-dose (200-400 IU/day) supplementation. A single study found positive effects on HAZ with high-dose supplementation (7,000 vs 4,000IU/day). CONCLUSIONS Measured bone outcomes were unaffected by high-dose vitamin D supplementation, even when target 25OHD measurements were achieved. This may be due to: insufficient sample size, follow-up, intermittent dosing, non-standardised definitions of vitamin D deficiency, or heterogeneity of enrolment criteria pertaining to baseline vitamin D concentration. High-dose vitamin D may improve HAZ and neuromuscular motor skills. Adequately powered trials are needed in settings where HIV burden is greatest. PROSPERO Number: CRD42016042938.
Collapse
Affiliation(s)
- Justin Penner
- University of Manitoba, Winnipeg, Canada
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - Rashida A. Ferrand
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | - Kate A. Ward
- MRC Lifecourse Epidemiology, University of Southampton, Southampton, United Kingdom
| | - James E. Burns
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Queen Elizabeth University Hospital, Greater Glasgow & Clyde NHS Trust, Glasgow, United Kingdom
| | - Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
McCarthy JM, McCann-Crosby BM, Rech ME, Yin J, Chen CA, Ali MA, Nguyen HN, Miller JL, Schaaf CP. Hormonal, metabolic and skeletal phenotype of Schaaf-Yang syndrome: a comparison to Prader-Willi syndrome. J Med Genet 2018; 55:307-315. [DOI: 10.1136/jmedgenet-2017-105024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/20/2017] [Accepted: 01/06/2018] [Indexed: 12/27/2022]
Abstract
BackgroundNonsense and frameshift mutations in the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13, have been reported to cause Schaaf-Yang syndrome (SYS), a genetic disorder that manifests as developmental delay/intellectual disability, hypotonia, feeding difficulties and autism spectrum disorder. Prader-Willi syndrome (PWS) is a genetic disorder characterised by severe infantile hypotonia, hypogonadotrophic hypogonadism, early childhood onset obesity/hyperphagia, developmental delay/intellectual disability and short stature. Scoliosis and growth hormone insufficiency are also prevalent in PWS.There is extensive documentation of the endocrine and metabolic phenotypes for PWS, but not for SYS. This study served to investigate the hormonal, metabolic and body composition phenotype of SYS and its potential overlap with PWS.MethodsIn nine individuals with SYS (5 female/4 male; aged 5–17 years), we measured serum ghrelin, glucose, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3, follicle-stimulating hormone, luteinising hormone, thyroid-stimulating hormone, free T4, uric acid and testosterone, and performed a comprehensive lipid panel. Patients also underwent X-ray and dual-energy X-ray absorptiometry analyses to assess for scoliosis and bone mineral density.ResultsLow IGF-1 levels despite normal weight/adequate nutrition were observed in six patients, suggesting growth hormone deficiency similar to PWS. Fasting ghrelin levels were elevated, as seen in individuals with PWS. X-rays revealed scoliosis >10° in three patients, and abnormal bone mineral density in six patients, indicated by Z-scores of below −2 SDs.ConclusionThis is the first analysis of the hormonal, metabolic and body composition phenotype of SYS. Our findings suggest that there is marked, but not complete overlap between PWS and SYS.
Collapse
|