1
|
Zhou RP, Liang HY, Hu WR, Ding J, Li SF, Chen Y, Zhao YJ, Lu C, Chen FH, Hu W. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res Rev 2023; 83:101785. [PMID: 36371015 DOI: 10.1016/j.arr.2022.101785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Age-related diseases have become more common with the advancing age of the worldwide population. Such diseases involve multiple organs, with tissue degeneration and cellular apoptosis. To date, there is a general lack of effective drugs for treatment of most age-related diseases and there is therefore an urgent need to identify novel drug targets for improved treatment. Acid-sensing ion channel 1a (ASIC1a) is a degenerin/epithelial sodium channel family member, which is activated in an acidic environment to regulate pathophysiological processes such as acidosis, inflammation, hypoxia, and ischemia. A large body of evidence suggests that ASIC1a plays an important role in the development of age-related diseases (e.g., stroke, rheumatoid arthritis, Huntington's disease, and Parkinson's disease.). Herein we present: 1) a review of ASIC1a channel properties, distribution, and physiological function; 2) a summary of the pharmacological properties of ASIC1a; 3) and a consideration of ASIC1a as a potential therapeutic target for treatment of age-related disease.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
2
|
Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022; 12:biom12101383. [PMID: 36291594 PMCID: PMC9599458 DOI: 10.3390/biom12101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is a common autoimmune disease that results from the deposition of antibodies–autoantigens in the joints, leading to long-lasting inflammation. The main features of RA include cartilage damage, synovial invasion and flare-ups of intra-articular inflammation, and these pathological processes significantly reduce patients’ quality of life. To date, there is still no drug target that can act in rheumatoid arthritis. Therefore, the search for novel drug targets has become urgent. Due to their unique physicochemical properties, calcium ions play an important role in all cellular activities and the body has evolved a rigorous calcium signaling system. Calcium-permeable channels, as the main operators of calcium signaling, are widely distributed in cell membranes, endoplasmic reticulum membranes and mitochondrial membranes, and mediate the efflux and entry of Ca2+. Over the last century, more and more calcium-permeable channels have been identified in human cells, and the role of this large family of calcium-permeable channels in rheumatoid arthritis has gradually become clear. In this review, we briefly introduce the major calcium-permeable channels involved in the pathogenesis of RA (e.g., acid-sensitive ion channel (ASIC), transient receptor potential (TRP) channel and P2X receptor) and explain the specific roles and mechanisms of these calcium-permeable channels in the pathogenesis of RA, providing more comprehensive ideas and targets for the treatment of RA.
Collapse
|
3
|
Wu JJ, Sun ZL, Liu SY, Chen ZH, Yuan ZD, Zou ML, Teng YY, Li YY, Guo DY, Yuan FL. The ASIC3-M-CSF-M2 macrophage-positive feedback loop modulates fibroblast-to-myofibroblast differentiation in skin fibrosis pathogenesis. Cell Death Dis 2022; 13:527. [PMID: 35661105 PMCID: PMC9167818 DOI: 10.1038/s41419-022-04981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor β1 (TGF-β1), thereby producing an ASIC3-M-CSF-TGF-β1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.
Collapse
Affiliation(s)
- Jun-Jie Wu
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Zi-Li Sun
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Si-Yu Liu
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Zhong-Hua Chen
- grid.260483.b0000 0000 9530 8833The Nantong University, Nantong, Jiangsu 226000 China
| | - Zheng-Dong Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Ming-Li Zou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Ying-Ying Teng
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Yue-Yue Li
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Dan-Yang Guo
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Feng-Lai Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| |
Collapse
|
4
|
Zhang Y, Cao N, Gao J, Liang J, Liang Y, Xie Y, Zhou S, Tang X. ASIC1a stimulates the resistance of human hepatocellular carcinoma by promoting EMT via the AKT/GSK3β/Snail pathway driven by TGFβ/Smad signals. J Cell Mol Med 2022; 26:2777-2792. [PMID: 35426224 PMCID: PMC9097844 DOI: 10.1111/jcmm.17288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.
Collapse
Affiliation(s)
- Yinci Zhang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Niandie Cao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiafeng Gao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiaojiao Liang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Yong Liang
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
- Huai’an Hospital Affiliated of Xuzhou Medical College and Huai’an Second Hospital Huai’an China
| | - Yinghai Xie
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Shuping Zhou
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Xiaolong Tang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| |
Collapse
|
5
|
Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Mol Cell Biochem 2021; 477:455-468. [PMID: 34783964 DOI: 10.1007/s11010-021-04292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
SNP rs3755955 (major/minor allele: G/A) located in Iduronidase-Alpha-L- (IDUA) gene was reported to be significant for human bone mineral density (BMD). This follow-up study was to uncover the underlying association mechanism through molecular and cellular functional assays relevant to bone. We tested the effects of single nucleotide polymorphisms (SNP) rs3755955 (defined allele G as wild-type and allele A as variant-type) on osteoblastic and osteoclastic functions, as well as protein phosphorylation in stably transfected human fetal osteoblast (hFOB) cell and mononuclear-macrophage (RAW264.7) cell. In hFOB cells, transfection with variant-type IDUA significantly decreased osteoblastic gene expression (OPN, COL1A1 and RANKL) (p < 0.01), impeded cell proliferation (p < 0.05), stimulated cell apoptosis (p < 0.001) and decreased ALP enzyme activity, as compared with that of wild-type IDUA transfection. In RAW264.7 cells, transfection with variant-type IDUA significantly inhibited cell apoptosis (p < 0.01), promoted osteoclastic precursor cell migration (p < 0.0001), growth (p < 0.01), osteoclastic gene expression (TRAP, RANK, Inte-αv and Cath-K) (p < 0.05) and TRAP enzyme activity (p < 0.001), as compared with that of wild-type IDUA transfection. In both hFOB and RAW264.7 cells, the total protein and IDUA protein-specific phosphorylation levels were significantly reduced by variant IDUA transfection, as compared with that of wild-type IDUA transfection (p < 0.05). Variant allele A of phosSNP rs3755955 in IDUA gene regulates protein phosphorylation, inhibits osteoblast function and promotes osteoclastic activity. The SNP rs3755955 could alter IDUA protein phosphorylation, significantly regulates human osteoblastic and osteoclastic gene expression, and influences the growth, differentiation and activity of osteoblast and osteoclast, hence to affect BMD.
Collapse
|
6
|
Gong S, Ma J, Tian A, Lang S, Luo Z, Ma X. Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends 2021; 16:58-72. [PMID: 34732613 DOI: 10.5582/bst.2021.01357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiheng Luo
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
7
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Li Y, Li J, Chen L, Xu L. The Roles of Long Non-coding RNA in Osteoporosis. Curr Stem Cell Res Ther 2021; 15:639-645. [PMID: 32357819 DOI: 10.2174/1574888x15666200501235735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.
Collapse
Affiliation(s)
- Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leilei Chen
- Department of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Andriessen AS, Donnelly CR, Ji RR. Reciprocal interactions between osteoclasts and nociceptive sensory neurons in bone cancer pain. Pain Rep 2021; 6:e867. [PMID: 33981921 PMCID: PMC8108580 DOI: 10.1097/pr9.0000000000000867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Many common cancers such as breast, prostate, and lung cancer metastasize to bones at advanced stages, producing severe pain and functional impairment. At present, the current pharmacotherapies available for bone cancer pain are insufficient to provide safe and efficacious pain relief. In this narrative review, we discuss the mechanisms used by cancer cells within the bone tumor microenvironment (TME) to drive bone cancer pain. In particular, we highlight the reciprocal interactions between tumor cells, bone-resorbing osteoclasts, and pain-sensing sensory neurons (nociceptors), which drive bone cancer pain. We discuss how tumor cells present within the bone TME accelerate osteoclast differentiation (osteoclastogenesis) and alter osteoclast activity and function. Furthermore, we highlight how this perturbed state of osteoclast overactivation contributes to bone cancer pain through (1) direct mechanisms, through their production of pronociceptive factors that act directly on sensory afferents; and (2) by indirect mechanisms, wherein osteoclasts drive bone resorption that weakens tumor-bearing bones and predisposes them to skeletal-related events, thereby driving bone cancer pain and functional impairment. Finally, we discuss some potential therapeutic agents, such as denosumab, bisphosphonates, and nivolumab, and discuss their respective effects on bone cancer pain, osteoclast overactivation, and tumor growth within the bone TME.
Collapse
Affiliation(s)
- Amanda S. Andriessen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher R. Donnelly
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
11
|
Tang R, Ba G, Li M, Li Z, Ye H, Lin H, Zhang W. Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol 2021; 278:2379-2386. [PMID: 33392760 DOI: 10.1007/s00405-020-06521-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE A variety of inflammatory cells are infiltrated histologically in sinonasal mucosa of chronic rhinosinusitis with nasal polyps (CRSwNP), especially CRSwNP with asthma. Acid-sensing ion channel 1a (ASIC1a) is essential in the process of sensing acidification and triggering inflammation. Whereas, its role and mechanism in CRSwNP remain uncertain. The present study aimed to explore the roles and mechanism of ASIC1a in the pathogenesis of CRSwNP. METHODS Nasal secretions from control subjects, patients with CRSwNP with or without asthma were collected for measuring pH values. Western blotting, real-time PCR and immunohistochemistry (IHC) were employed to assess ASIC1a expression in nasal tissue samples from included subjects. The co-localization of ASIC1a with inflammatory cells was evaluated by immunofluorescence staining. Then, dispersed nasal polyp cells (DNPCs) were cultured under acidified condition (pH 6.0), with or without ASIC1a inhibitor amiloride. Western blotting, real-time PCR, LDH activity kit, and ELISA were performed to assess the effects and mechanisms of stimulators on the cells. RESULTS The pH values were significantly lower in the nasal secretions from patients with CRSwNP with asthma. Significant upregulation of ASIC1a protein, mRNA levels, and positive cells was found in CRSwNP with asthma. ASIC1a was detected in a variety of inflammatory cells. In cultured DNPCs, significant alterations of ASIC1a levels, LDH activity, HIF-1α levels, and inflammatory cytokines were found under acidified condition (pH 6.0), but were prevented by amiloride. CONCLUSION Upregulation of ASIC1a might be essential in the process of sensing acidification and triggering inflammatory response via enhancing HIF-1α expression and LDH activity to activate inflammatory cells in the pathogenesis of CRSwNP, especially in CRSwNP with asthma.
Collapse
Affiliation(s)
- Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Mingxian Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Haibo Ye
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
12
|
Barad M, Csukasi F, Bosakova M, Martin JH, Zhang W, Paige Taylor S, Lachman RS, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 2020; 62:103075. [PMID: 33242826 PMCID: PMC7695969 DOI: 10.1016/j.ebiom.2020.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. Funding Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Collapse
Affiliation(s)
- Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Wenjuan Zhang
- Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States
| | - S Paige Taylor
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Deborah Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Jessica X Chong
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, United States.
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, Málaga 29590, Spain
| |
Collapse
|
13
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
14
|
Tao SC, Guo SC. Extracellular vesicles in bone: "dogrobbers" in the "eternal battle field". Cell Commun Signal 2019; 17:6. [PMID: 30658653 PMCID: PMC6339294 DOI: 10.1186/s12964-019-0319-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
15
|
|
16
|
Wu QY, Yuan FL, Wang B, Li X. Comments on Bergman et al.: Bisphosphonate use after clinical fracture and risk of new fracture. Osteoporos Int 2018; 29:2157. [PMID: 29978255 DOI: 10.1007/s00198-018-4614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Q-Y Wu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - F-L Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - B Wang
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - X Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China.
| |
Collapse
|
17
|
Song T, Lin T, Ma J, Guo L, Zhang L, Zhou X, Ye T. Regulation of TRPV5 transcription and expression by E2/ERα signalling contributes to inhibition of osteoclastogenesis. J Cell Mol Med 2018; 22:4738-4750. [PMID: 30063124 PMCID: PMC6156443 DOI: 10.1111/jcmm.13718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing of osteoclasts formation and activity because of oestrogen (E2) deficiency is very important in the aetiology of postmenopausal osteoporosis. Our previous studies showed that E2 inhibited osteoclastic bone resorption by increasing the expression of Transient Receptor Potential Vanilloid 5 (TRPV5) channel. However, the exact mechanism by which E2 increases TRPV5 expression is not fully elucidated. In this study, Western blot, quantitative real‐time PCR, tartrate‐resistant acid phosphatase staining, F‐actin ring staining, chromatin immunoprecipitation and luciferase assay were applied to explore the mechanisms that E2‐induced TRPV5 expression contributes to the inhibition of osteoclastogenesis. The results showed that silencing or overexpressing of TRPV5 significantly affected osteoclasts differentiation and activity. Silencing of TRPV5 obviously alleviated E2‐inhibited osteoclastogenesis, resulting in increasing of bone resorption. E2 stimulated mature osteoclasts apoptosis by increasing TRPV5 expression. Further studies showed that E2 increased TRPV5 expression through the interaction of the oestrogen receptor α (ERα) with NF‐κB, which could directly bind to the fragment of −286 nt ~ −277 nt in the promoter region of trpv5. Taken together, we conclude that TRPV5 plays a dominant effect in E2‐mediated osteoclasts formation, bone resorption activity and osteoclasts apoptosis. Furthermore, NF‐κB plays an important role in the transcriptional activation of E2‐ERα stimulated TRPV5 expression.
Collapse
Affiliation(s)
- Tengfei Song
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University, shanghai, China
| | - Xuhui Zhou
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianwen Ye
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Yuan FL, Wu QY, Miao ZN, Xu MH, Xu RS, Jiang DL, Ye JX, Chen FH, Zhao MD, Wang HJ, Li X. Osteoclast-Derived Extracellular Vesicles: Novel Regulators of Osteoclastogenesis and Osteoclast-Osteoblasts Communication in Bone Remodeling. Front Physiol 2018; 9:628. [PMID: 29910740 PMCID: PMC5992398 DOI: 10.3389/fphys.2018.00628] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play an important role in cellular communication during skeletal growth and homeostasis. Bioactive molecules carried by EVs are transported to neighboring and distant cells to trigger a series of signaling cascades influencing bone homeostasis. The bioactive activities of osteoclast-derived EVs include regulation of osteoclastogenesis and osteoclast–osteoblast communication. As osteoclast-derived EVs have the potential to regulate osteoclasts and osteoblasts, their application in osteoporosis and other bone metabolic disorders is currently under investigation. However, very few reviews of osteoclast-derived EVs in bone remodeling regulation have yet been published. This article aims to review recent advances in this field, summarizing a new regulator of osteoclastogenesis and osteoclast–osteoblast communication mediated by osteoclast-derived EVs. We will analyze the major challenges in the field and potential for the therapeutic application of EVs.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Qian-Yuan Wu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Zong-Ning Miao
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Ming-Hui Xu
- Department of Pediatrics, People's Hospital of Puyang, Puyang, China
| | - Rui-Sheng Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Dong-Lin Jiang
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Jun-Xing Ye
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Fei-Hu Chen
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hao-Jue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Jiangsu, China
| | - Xia Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| |
Collapse
|
19
|
Wu QY, Li X, Miao ZN, Ye JX, Wang B, Zhang F, Xu RS, Jiang DL, Zhao MD, Yuan FL. Long Non-coding RNAs: A New Regulatory Code for Osteoporosis. Front Endocrinol (Lausanne) 2018; 9:587. [PMID: 30349507 PMCID: PMC6186991 DOI: 10.3389/fendo.2018.00587] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in bone mass and degradation of the bone microstructure, which increases bone fragility and fracture risk. However, the molecular mechanisms of osteoporosis remain unclear. Long non-coding RNAs (lncRNAs) have become important epigenetic regulators controlling the expression of genes and affecting multiple biological processes. Accumulating evidence of the involvement of lncRNAs in bone remolding has increased understanding of the molecular mechanisms underlying osteoporosis. This review aims to summarize recent progress in the elucidation of the role of lncRNAs in bone remodeling, and how it contributes to osteoblast and osteoclast function. This knowledge will facilitate the understanding of lncRNA roles in bone biology and shed new light on the modulation and potential treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Xia Li
- Third Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xia Li
| | - Zong-Ning Miao
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Jun-Xing Ye
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Bei Wang
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Zhang
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Rui-Sheng Xu
- Third Affiliated Hospital of Nantong University, Nantong, China
| | - Dong-Lin Jiang
- Third Affiliated Hospital of Nantong University, Nantong, China
| | | | - Feng Lai Yuan
- Third Affiliated Hospital of Nantong University, Nantong, China
- Feng Lai Yuan
| |
Collapse
|