1
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
2
|
Lyytinen AT, Linneberg A. Vitamin K - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10260. [PMID: 37920674 PMCID: PMC10619414 DOI: 10.29219/fnr.v67.10260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/09/2022] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Vitamin K occurs in dietary supply in two major forms: phylloquinone (vitamin K1) and menaquinones (collectively referred as vitamin K2). Phylloquinone is derived from plants. There are at least 10 forms of menaquinones varying in chain length and they are produced by bacteria except menaquinone-4. Menaquinone-4 is formed from phylloquinone or other menaquinone forms. Phylloquinone is considered to be the major contributor and menaquinones are thought to contribute less to vitamin K intake in Western diets. However, less is known about the content of menaquinones than phylloquinones in foods. Vitamin K is known to function as an enzymatic cofactor in the gamma-carboxylation of vitamin K dependent proteins (VKDPs). Hepatic VKDPs are involved in coagulation. Extrahepatic VKDPs have a role e.g. in bone health and vascular calcification. However, the amount of vitamin K needed for optimal functioning of the different VKDPs is not known.
Collapse
Affiliation(s)
- Arja T Lyytinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Lewiecki EM, Bellido T, Bilezikian JP, Brown JP, Farooki A, Kovacs CS, Lee B, Leslie WD, McClung MR, Prasarn ML, Sellmeyer DE. Proceedings of the 2023 Santa Fe Bone Symposium: Progress and Controversies in the Management of Patients with Skeletal Diseases. J Clin Densitom 2023; 26:101432. [PMID: 37944445 PMCID: PMC10900844 DOI: 10.1016/j.jocd.2023.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
The Santa Fe Bone Symposium (SFBS) held its 23rd annual event on August 5-6, 2023, in Santa Fe, New Mexico, USA. Attendees participated in-person and remotely, representing many states and countries. The program included plenary presentations, panel discussions, satellite symposia, a Project ECHO workshop, and a session on healthcare policy and reimbursement for fracture liaison programs. A broad range of topics were addressed, including transitions of osteoporosis treatments over a lifetime; controversies in vitamin D; update on Official Positions of the International Society for Clinical Densitometry; spine surgery and bone health; clinical applications of bone turnover markers; basic bone biology for clinicians; premenopausal-, pregnancy-, and lactation-associated osteoporosis; cancer treatment induced bone loss in patients with breast cancer and prostate cancer; genetic testing for skeletal diseases; and an update on nutrition and bone health. There were also sessions on rare bone diseases, including managing patients with hypophosphatasia; treatment of X-linked hypophosphatemia; and assessment and treatment of patients with hypoparathyroidism. There were oral presentations of abstracts by endocrinology fellows selected from those who participated in the Santa Fe Fellows Workshop on Metabolic Bone Diseases, held the 2 days prior to the SFBS. These proceedings of the 2023 SFBS present the clinical highlights and insights generated from many formal and informal discussions in Santa Fe.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, United States.
| | - Teresita Bellido
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John P Bilezikian
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | | | - Azeez Farooki
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, United States
| | - Christopher S Kovacs
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Brendan Lee
- Baylor College of Medicine, Houston, Texas, United States
| | | | | | | | | |
Collapse
|
4
|
Alonso N, Meinitzer A, Fritz-Petrin E, Enko D, Herrmann M. Role of Vitamin K in Bone and Muscle Metabolism. Calcif Tissue Int 2023; 112:178-196. [PMID: 35150288 PMCID: PMC9859868 DOI: 10.1007/s00223-022-00955-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
Vitamin K, a cofactor for the γ-glutamyl carboxylase enzyme, is required for the post-translational activation of osteocalcin and matrix Gla protein, which play a key role in bone and muscle homeostasis. In vivo and in vitro models for osteoporosis and sarcopenia suggest the vitamin K could exert a positive effect in both conditions. In bone, it increases osteoblastogenesis, whilst decreases osteoclast formation and function. In muscle, it is associated with increased satellite cell proliferation and migration and might play a role in energy metabolism. Observational trials suggest that high levels of vitamin K are associated with increased bone mineral density and reduced fracture risk. However, interventional studies for vitamin K supplementation yielded conflicting results. Clinical trials in sarcopenia suggest that vitamin K supplementation could improve muscle mass and function. One of the main limitations on the vitamin K studies are the technical challenges to measure its levels in serum. Thus, they are obtained from indirect sources like food questionnaires, or levels of undercarboxylated proteins, which can be affected by other environmental or biological processes. Although current research appoints to a beneficial effect of vitamin K in bone and muscle, further studies overcoming the current limitations are required in order to incorporate this supplementation in the clinical management of patients with osteosarcopenia.
Collapse
Affiliation(s)
- N Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - A Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - E Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - D Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - M Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Biver E, Herrou J, Larid G, Legrand MA, Gonnelli S, Annweiler C, Chapurlat R, Coxam V, Fardellone P, Thomas T, Lecerf JM, Cortet B, Paccou J. Dietary recommendations in the prevention and treatment of osteoporosis. Joint Bone Spine 2022; 90:105521. [PMID: 36566976 DOI: 10.1016/j.jbspin.2022.105521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION This article presents the initial recommendations of the French Rheumatology Society (Société Française de Rhumatologie - SFR) and the Osteoporosis Research and Information Group (Groupe de Recherche et d'Informations sur les Ostéoporoses - GRIO) on the role of diet in the prevention and treatment of osteoporosis. METHODS The recommendations were produced by a working group composed of rheumatologists, physician nutrition specialists and a geriatrician. Fifteen (15) questions pertaining to "daily practices" were preselected by the working group. For the literature review, the working group focussed mainly on the effects of diet on bone mineral density (BMD) and fractures, and primarily on meta-analyses of longitudinal studies and dietary intervention studies. RESULTS A Mediterranean-type diet and the daily consumption of 2 to 3 dairy products are recommended. Together, these provide the calcium and "high quality" protein required to maintain a normal calcium-phosphorus balance and bone metabolism, and are associated with lower fracture risk. Conversely, unbalanced Western diets, vegan diets, weight-loss diets in non-overweight individuals, alcohol consumption and daily consumption of sodas are advised against. In terms of the beneficial effects on bone mineral density and fracture risk, current scientific data are either insufficient or too divergent to recommend increasing or restricting the consumption of tea or coffee, vitamins other than vitamin D, vitamin D-enriched or phytoestrogen-rich foods, calcium-enriched plant-based beverages, oral nutritional supplements, or dietary sources of prebiotics and probiotics. CONCLUSIONS These are the first set of recommendations addressing the role of diet in the prevention and treatment of osteoporosis. More research is necessary to direct and support guidelines.
Collapse
Affiliation(s)
- Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Julia Herrou
- Service de rhumatologie, Inserm U 1153, université de Paris, AP-HP Centre, hôpital Cochin, Paris, France
| | - Guillaume Larid
- Rheumatology Department, University Hospital of Poitiers, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers, France
| | - Mélanie A Legrand
- Department of Rheumatology, Edouard Herriot University Hospital, Inserm UMR 1033, Université de Lyon, 5, place d'Arsonval, 69003 Lyon, France
| | - Sara Gonnelli
- Department of Rheumatology, Cochin Hospital, Assistance publique-Hôpitaux de Paris Centre, Institut National de la Santé et de la Recherche Médicale (Inserm) Unités Mixtes de Recherche (UMR) 1153, Université de Paris, Paris, France
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France
| | - Roland Chapurlat
- Department of Rheumatology, Edouard Herriot University Hospital, Inserm UMR 1033, Université de Lyon, 5, place d'Arsonval, 69003 Lyon, France
| | - Véronique Coxam
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63009 Clermont-Ferrand, France
| | | | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, Centre Hospitalier Universitaire (CHU) Saint-Etienne, Inserm U1059, Lyon University, Saint-Etienne, France
| | - Jean-Michel Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - Bernard Cortet
- Department of Rheumatology, Université de Lille, CHU Lille, MABlab ULR 4490, 59000 Lille, France
| | - Julien Paccou
- Department of Rheumatology, Université de Lille, CHU Lille, MABlab ULR 4490, 59000 Lille, France.
| |
Collapse
|
6
|
Ma ML, Ma ZJ, He YL, Sun H, Yang B, Ruan BJ, Zhan WD, Li SX, Dong H, Wang YX. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front Public Health 2022; 10:979649. [PMID: 36033779 PMCID: PMC9403798 DOI: 10.3389/fpubh.2022.979649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Vitamin K (VK) as a nutrient, is a cofactor in the carboxylation of osteocalcin (OC), which can bind with hydroxyapatite to promote bone mineralization and increase bone strength. However, some studies have been inconsistent on whether vitamin K2 (VK2) can maintain or improve bone mineral density (BMD) and reduce the incidence of fractures in postmenopausal women. Therefore, the main objective of this meta-analysis was to determine the effect of VK2 as a nutritional supplement on BMD and fracture incidence in postmenopausal women. Methods We searched PubMed, EMBASE, and Cochrane Library databases (published before March 17, 2022) and then extracted and pooled data from all randomized controlled trials (RCTs) that met the inclusion criteria. Results Sixteen RCTs with a total of 6,425 subjects were included in this meta-analysis. The overall effect test of 10 studies showed a significant improvement in lumbar spine BMD (BMD LS) (P = 0.006) with VK2. The subgroup analysis of VK2 combination therapy showed that BMD LS was significantly maintained and improved with the administration of VK2 (P = 0.03). The overall effect test of the six RCTs showed no significant difference in fracture incidence between the two groups (RR=0.96, P=0.65). However, after excluding one heterogeneous study, the overall effect test showed a significant reduction in fracture incidence with VK2 (RR = 0.43, P = 0.01). In addition, this meta-analysis showed that VK2 reduced serum undercarboxylated osteocalcin (uc-OC) levels and the ratio of uc-OC to cOC in both subgroups of VK2 combined intervention and alone. However, for carboxylated osteocalcin (cOC), both subgroup analysis and overall effect test showed no significant effect of VK2 on it. And the pooled analysis of adverse reactions showed no significant difference between the VK2 and control groups (RR = 1.03, 95%CI 0.87 to 1.21, P = 0.76). Conclusions The results of this meta-analysis seem to indicate that VK2 supplementation has a positive effect on the maintenance and improvement of BMD LS in postmenopausal women, and it can also reduce the fracture incidence, serum uc-OC levels and the ratio of uc-OC to cOC. In conclusion, VK2 can indirectly promote bone mineralization and increase bone strength.
Collapse
Affiliation(s)
- Ming-ling Ma
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zi-jian Ma
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Yi-lang He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Hao Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Bin Yang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Bin-jia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wan-da Zhan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Shi-xuan Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Hui Dong
| | - Yong-xiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,*Correspondence: Yong-xiang Wang
| |
Collapse
|
7
|
Li N, Jiang L, Liu Y, Zou S, Lu M, An H. Metabolomics Combined with Transcriptomics Analysis Revealed the Amino Acids, Phenolic Acids, and Flavonol Derivatives Biosynthesis Network in Developing Rosa roxburghii Fruit. Foods 2022; 11:foods11111639. [PMID: 35681389 PMCID: PMC9180193 DOI: 10.3390/foods11111639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Rosa roxburghii Tratt. is a specific fruit with high nutritional value and antioxidative activities. However, the key metabolites and their biosynthesis are still unknown. Herein, a main cultivated variety, ‘Guinong 5’ (Rr5), was chosen to analyze the metabolomics of the three developmental stages of R. roxburghii fruit by liquid chromatography–tandem mass spectrometry (LC-MS/MS). A total of 533 metabolites were identified, of which 339 were significantly altered. Total phenols, flavonoids, and amino acids were significantly correlated to at least one in vitro antioxidant activity. The conjoint Kyoto Encyclopedia of Genes and Genomes (KEGG) co-enrichment analysis of metabolome and transcriptome was focused on amino acid, phenylpropanoid, and flavonoid biosynthesis pathways. The amino acid, phenolic acid, and flavonol biosynthesis networks were constructed with 32 structural genes, 48 RrMYBs, and 23 metabolites. Of these, six RrMYBs correlated to 9–15 metabolites in the network were selected to detect the gene expression in six different R. roxburghii genotypes fruits. Subsequently, 21 key metabolites were identified in the in vitro antioxidant activities in the fruits at various developmental stages or in fruits of different R. roxburghii genotypes. We found that four key RrMYBs were related to the significantly varied amino acids, phenolic acids, and flavonol derivatives in the network during fruit development and the key metabolites in the in vitro antioxidative activities in the fruits of six R. roxburghii genotypes. This finding provided novel insights into the flavonoid, polyphenol, and amino acid synthesis in R. roxburghii.
Collapse
Affiliation(s)
- Nanyu Li
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Lanlan Jiang
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Yiyi Liu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Shimei Zou
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Min Lu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- Correspondence: (M.L.); (H.A.)
| | - Huaming An
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
- Correspondence: (M.L.); (H.A.)
| |
Collapse
|
8
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
9
|
Chen YC, Hsu BG, Lin WC, Lee MC. Inverse association of serum osteocalcin and bone mineral density in renal transplant recipients. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_55_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
11
|
Zhang Y, Shea MK, Judd SE, D'Alton ME, Kahe K. Issues related to the research on vitamin K supplementation and bone mineral density. Eur J Clin Nutr 2021; 76:335-339. [PMID: 34050327 DOI: 10.1038/s41430-021-00941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yijia Zhang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - M Kyla Shea
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Suzanne E Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Nutrition influences skeletal health throughout the lifespan, from the impact of maternal intakes during development, through the development of peak bone mass, to the rate of bone loss during aging. However, there are limited data available on the effects of nutritional supplements on bone density, let alone fracture risk. This review will assess the current literature, focusing on human studies, and emphasizing nutrients where bone density or fracture data are available. RECENT FINDINGS Calcium and vitamin D supplements, in combination, reduce fracture risk, particularly in populations with low intakes. Extensive recent analyses have supported the safety of these interventions at recommended intakes. There is growing evidence that specific isoflavones may improve bone density although fracture data are lacking. Multiple other nutrient supplements may benefit skeletal health, but data are limited. The effect size of nutrient interventions are relatively small, requiring large sample sizes for trials with bone outcomes, may be difficult to blind, and the impact of supplementation may depend on baseline intake. However, nutrition is the only intervention that can be implemented life long and on a population wide basis. Further investigation is needed into the potential benefits of nutritional supplements to determine in which settings supplements may add benefit in addition to dietary intakes.
Collapse
Affiliation(s)
- Laila S Tabatabai
- Division of Endocrinology, Houston Methodist Hospital, Houston, TX, USA
| | - Deborah E Sellmeyer
- Division of Endocrinology, Gerontology, and Metabolism, School of Medicine, Stanford University, 300 Pasteur Drive, Room S025, Palo Alto, Stanford, CA, 94305-5103, USA.
| |
Collapse
|
13
|
Qin H, Zhao W, Jiao Y, Zheng H, Zhang H, Jin J, Li Q, Chen X, Gao X, Han Y. Aqueous Extract of Salvia miltiorrhiza Bunge- Radix Puerariae Herb Pair Attenuates Osteoporosis in Ovariectomized Rats Through Suppressing Osteoclast Differentiation. Front Pharmacol 2021; 11:581049. [PMID: 33708107 PMCID: PMC7941748 DOI: 10.3389/fphar.2020.581049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional herb pair Salvia miltiorrhiza Bunge-Radix Puerariae (DG) owns various biological activities including anti-inflammatory and anti-oxidative stress. Oxidative stress is one high-risk factor for osteoporosis, then effect of DG on osteoporosis and underlying mechanisms was explored both in vivo and in vitro. Firstly, the predication from network pharmacology hinted that DG has the potential for ameliorating osteoporosis. Consistent with predication, DG significantly restored bone loss and deficiency of type II collagen, decreased TRAP and Cathepsin K positive areas in femur. Meanwhile it improved important characteristics of microarchitectural deterioration of tissue, reduced the numbers of NFATc1-positive osteoclast in the vertebra as well as decreased the serum osteoclast-specific cytokine RANKL and OPG release in OVX rats exhibiting its protective effect against osteoporosis. In vitro, DG noticeably decreased osteoclastic-special marker protein expressions of RANK, c-Fos and NFATc1. Furthermore, autophagy pathway p62/LC3B, ROS production and NF-κB were all activated by RANKL stimulation and blocked by DG pretreatment. Moreover, autophagy inhibitors, ROS scavenger, Ca2+ chelator and NF-κB inhibitor remarkably suppressed c-Fos and NFATc1 expressions. Taken together, DG may ameliorate osteoporosis by regulating osteoclast differentiation mediated by autophagy and oxidative stress. This study provided a mechanistic basis for DG treating osteoporosis and offered a safe dose for DG in preventing and improving bone diseases.
Collapse
Affiliation(s)
- Huan Qin
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yang Jiao
- Department of Biomedical Engineering City University of Hong Kong, Hong Kong SAR, China
| | - Haoyi Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Hao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jingyu Jin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuping Chen
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Gao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Lee N, Choi YJ, Chung YS. The secular trends in the use of medications for osteoporosis in South Korea using Intercontinental Medical Statistics Health Sales Audit 2006-2018. Osteoporos Sarcopenia 2021; 6:185-190. [PMID: 33426307 PMCID: PMC7783074 DOI: 10.1016/j.afos.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Objectives Osteoporosis medications are widely available in South Korea, and well reimbursed by the Government Health Insurance; however, some expensive drugs are not reimbursed. The prescription of anti-osteoporosis drugs (AODs) are increasing for the elderly and for postmenopausal women. We investigate the secular trends of AODs in South Korea. Methods We used the Intercontinental Medical Statistics Health Sales Audit between January 1, 2006 and December 31, 2018. We analyzed the total sales costs and market share of AODs including bisphosphonates, selective estrogen receptor modulators (SERMs), parathyroid hormone (PTH), calcitonins, and denosumab using the number of days of therapy (DOT). Changes of prescription patterns including original versus generic drugs, vitamin D combination, and types of medical institutions were also analyzed. Results Bisphosphonates were the most frequently used drug during the study period although its DOT declined from 92.5% in 2008 to 80.0% in 2018. SERMs were the second-most used medication, and has maintained around 13% since 2015. The proportion of calcitonins has decreased since 2011, mainly due to malignancy risk. In contrast, the DOT of PTH and denosumab increased to 0.8% and 4.7% in 2018, respectively. The use of generics, vitamin D combination, and intravenous bisphosphonates has been increasing throughout the study period. Conclusions Prescription patterns using DOT are changing probably due to the increase in older adult patients and severely osteoporotic patients. There are other issues including safety and the launching of new drugs.
Collapse
Affiliation(s)
- Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
15
|
Fujishiro A, Iwasa M, Fujii S, Maekawa T, Andoh A, Tohyama K, Takaori-Kondo A, Miura Y. Menatetrenone facilitates hematopoietic cell generation in a manner that is dependent on human bone marrow mesenchymal stromal/stem cells. Int J Hematol 2020; 112:316-330. [PMID: 32572826 DOI: 10.1007/s12185-020-02916-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022]
Abstract
Vitamin K2 in the form of menatetrenone has clinical benefits for osteoporosis and cytopenia. Given the dominant role of mesenchymal-osteolineage cells in the regulation of hematopoiesis, we investigated whether menatetrenone alters the hematopoiesis-supportive capability of human bone marrow mesenchymal stromal/stem cells (BM-MSCs). Menatetrenone up-regulated fibronectin protein expression in BM-MSCs without affecting their proliferation and differentiation capabilities. In addition, menatetrenone treatment of BM-MSCs enhanced generation of the CD34+ cell population in co-cultures through acceleration of the cell cycle. This effect was associated with cell-cell interactions mediated by VLA-4 and fibronectin. This proposal was supported by cytokine array and quantitative real-time PCR analyses, in which there were no significant differences between the expression levels of hematopoiesis-associated soluble factors in naïve and menatetrenone-treated BM-MSCs. Profiling of hematopoietic cells in co-cultures with menatetrenone-treated BM-MSCs demonstrated that they included significantly more CD34+CD38+ hematopoietic progenitor cells and cells skewed toward myeloid and megakaryocytic lineages than those in co-cultures with untreated BM-MSCs. Notably, myelodysplastic syndrome-derived cells were induced to undergo apoptosis when co-cultured with BM-MSCs, and this effect was enhanced by menatetrenone. Overall, our findings indicate that pharmacological treatment with menatetrenone bestows a unique hematopoiesis-supportive capability on BM-MSCs, which may contribute to the clinical improvement of cytopenia.
Collapse
Affiliation(s)
- Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan.
| | - Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Hematology and Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Hematology and Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020; 140:55-63. [PMID: 32972636 DOI: 10.1016/j.maturitas.2020.05.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Supplementation with calcium (Ca) and/or vitamin D (vitD) is key to the management of osteoporosis. Other supplements like vitamin K2 (VitK2) and magnesium (Mg) could contribute to the maintenance of skeletal health. This narrative review summarizes the most recent data on Ca, vitD, vitK2 and Mg supplementation and age-related bone and muscle loss. Ca supplementation alone is not recommended for fracture prevention in the general postmenopausal population. Patients at risk of fracture with insufficient dietary intake and absorption could benefit from calcium supplementation, but it needs to be customized, taking into account possible side-effects and degree of adherence. VitD supplementation is essential in patients at risk of fracture and/or vitD deficiency. VitK2 and Mg both appear to be involved in bone metabolism. Data suggest that VitK2 supplementation might improve bone quality and reduce fracture risk in osteoporotic patients, potentially enhancing the efficacy of Ca ± vitD. Mg deficiency could negatively influence bone and muscle health. However, data regarding the efficacy of vitK2 and Mg supplementation on bone are inconclusive.
Collapse
|
17
|
Mott A, Bradley T, Wright K, Cockayne ES, Shearer MJ, Adamson J, Lanham-New SA, Torgerson DJ. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int 2019; 30:1543-1559. [PMID: 31076817 DOI: 10.1007/s00198-019-04949-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
UNLABELLED Vitamin K may affect bone mineral density and fracture incidence. Since publication of a previous systematic review the integrity of some of the previous evidence has been questioned and further trials have been published. Therefore an update to the systematic review was required. INTRODUCTION This systematic review was designed to assess the effectiveness of oral vitamin K supplementation for increasing bone mineral density and reducing fractures in adults. METHODS MEDLINE, EMBASE, CENTRAL, CINAHL, clinicaltrials.gov, and WHO-ICTRP were searched for eligible trials. Randomised controlled trials assessing oral vitamin K supplementation that assessed bone mineral density or fractures in adult populations were included. A total of 36 studies were identified. Two independent reviewers extracted data using a piloted extraction form. RESULTS For post-menopausal or osteoporotic patients, meta-analysis showed that the odds of any clinical fracture were lower for vitamin K compared to controls (OR, 0.72, 95%CI 0.55 to 0.95). Restricting the analysis to low risk of bias trials reduced the OR to 0.76 (95%CI, 0.58 to 1.01). There was no difference in vertebral fractures between the groups (OR 0.96, 95%CI 0.83 to 1.11). In the bone mineral density meta-analysis, percentage change from baseline at the lumbar spine was higher at 1 year (MD 0.93, 95%, CI - 0.02 to 1.89) and 2 years (MD 1.63%, 95%CI 0.10 to 3.16) for vitamin K compared to controls; however, removing trials at high risk of bias tended to result in smaller differences that were not statistically significant. At 6 months, it was higher in the hip (MD 0.42%, 95%CI 0.01 to 0.83) and femur (MD 0.29%, 95%CI 0.17 to 0.42). There was no significant difference at other anatomical sites. CONCLUSIONS For post-menopausal or osteoporotic patients, there is no evidence that vitamin K affects bone mineral density or vertebral fractures; it may reduce clinical fractures; however, the evidence is insufficient to confirm this. There are too few trials to draw conclusions for other patient groups.
Collapse
Affiliation(s)
- A Mott
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK.
| | - T Bradley
- Chesterfield Hospital, Chesterfield Road, Calow, S44 5BL, UK
| | - K Wright
- Centre for Reviews & Dissemination, University of York, York, YO10 5DD, UK
| | - E S Cockayne
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK
| | - M J Shearer
- Centre for Haemostasis and Thrombosis, Guy's and St Thomas' NHS Trust, London, SE1 7EH, UK
| | - J Adamson
- Institute of Health & Society, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - S A Lanham-New
- Nutritional Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - D J Torgerson
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK
| |
Collapse
|