1
|
Kumar S, Doyle J, Wood C, Heriseanu R, Weber G, Nier L, Middleton JW, March L, Clifton-Bligh RJ, Girgis CM. Preventing OsteoPorosis in Spinal Cord Injury (POPSCI) Study-Early Zoledronic Acid Infusion in Patients with Acute Spinal Cord Injury. Calcif Tissue Int 2024; 115:611-623. [PMID: 39320468 PMCID: PMC11531416 DOI: 10.1007/s00223-024-01292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Accelerated sub-lesional bone loss is common in the first 2-3 years after traumatic spinal cord injury (TSCI), particularly in the distal femur and proximal tibia. Few studies have explored efficacy of antiresorptives for acute bone loss prevention post-TSCI, with limited data for knee bone mineral density (BMD) or beyond two years follow-up. An open-label non-randomized study was performed at Royal North Shore Hospital and Royal Rehab Centre, Sydney between 2018 and 2023. An 'acute interventional cohort' (n = 11) with TSCI (duration ≤ 12-weeks) received a single infusion of 4 mg zoledronic acid (ZOL) at baseline. A 'chronic non-interventional cohort' (n = 9) with TSCI (duration 1-5-years) did not receive ZOL. All participants underwent baseline and 6-monthly blood tests (including CTx and P1NP) and 12-monthly DXA BMD scans (including distal femur and proximal tibia). Participants were predominantly Caucasian and male (mean age 38.4 years). At baseline, the 'acute' cohort had higher serum CTx, P1NP and sclerostin concentrations, while the 'chronic' cohort had lower left hip and knee BMD. Majority with acute TSCI experienced an acute phase reaction after ZOL (9/11; 82%). In the acute cohort, left hip BMD fell by mean ~ 15% by 48 months. Left distal femoral and proximal tibial BMD declined by mean ~ 6-13% at 12 months and ~ 20-23% at 48 months, with a tendency towards greater BMD loss in motor-complete TSCI. A single early ZOL infusion in acute TSCI could not attenuate rapidly declining hip and knee BMD. Prospective controlled studies are required to establish the optimal strategy for preventing early bone loss after acute TSCI.
Collapse
Affiliation(s)
- Shejil Kumar
- Endocrinology Department, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
- Endocrinology Department, Westmead Hospital, Sydney, Australia
| | - Jean Doyle
- Endocrinology Department, Royal North Shore Hospital, Sydney, Australia
| | - Cameron Wood
- Chemical Pathology Department, Royal North Shore Hospital, Sydney, Australia
| | | | | | - Lianne Nier
- Spinal Cord Injuries Unit, Royal North Shore Hospital, Sydney, Australia
| | - James W Middleton
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
- Royal Rehab Group, Sydney, Australia
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, Australia
| | - Lyn March
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
- Rheumatology Department, Royal North Shore Hospital, Sydney, Australia
- Institute of Bone and Joint Research, Kolling Institute of Medical Research, Sydney, Australia
| | - Roderick J Clifton-Bligh
- Endocrinology Department, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Sydney, Australia
| | - Christian M Girgis
- Endocrinology Department, Royal North Shore Hospital, Sydney, Australia.
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia.
- Endocrinology Department, Westmead Hospital, Sydney, Australia.
| |
Collapse
|
2
|
Schumm AK, Craige EA, Arora NK, Owen PJ, Mundell NL, Buehring B, Maus U, Belavy DL. Does adding exercise or physical activity to pharmacological osteoporosis therapy in patients with increased fracture risk improve bone mineral density and lower fracture risk? A systematic review and meta-analysis. Osteoporos Int 2023; 34:1867-1880. [PMID: 37430002 PMCID: PMC10579159 DOI: 10.1007/s00198-023-06829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/06/2023] [Indexed: 07/12/2023]
Abstract
This prospectively registered systematic review and meta-analysis examines whether exercise (EX) training has an additive effect to osteoanabolic and/or antiresorptive pharmacological therapy (PT) in people with osteoporosis on bone mineral density (BMD), bone turnover markers (BTMs), fracture healing, and fractures. Four databases (inception to 6 May 2022), 5 trial registries, and reference lists were searched. Included were randomized controlled trials comparing the effect of EX + PT vs. PT with regard to BMD, BTM, fracture healing, and fractures. Risk of bias was assessed using the Cochrane RoB2 and certainty of evidence by the GRADE approach. Random-effects meta-analysis with Hartung-Knapp-Sidik-Jonkman adjustment was used to estimate standardized mean differences and 95% confidence intervals. Out of 2593 records, five RCTs with 530 participants were included. Meta-analysis showed with very low certainty evidence and wide confidence intervals that EX + PT compared to PT had larger effect sizes for BMD at 12 months at the hip (SMD [95%CI]: 0.18 [- 1.71; 2.06], n = 3 studies), tibia (0.25 [- 4.85; 5.34], n = 2), lumbar spine (0.20 [- 1.15; 1.55], n = 4), and forearm (0.05 [- 0.35; 0.46], n = 3), but not femoral neck (- 0.03 [- 1.80; 1.75], n = 3). Furthermore, no improvement was revealed for BTM such as bone ALP (- 0.68 [- 5.88; 4.53], n = 3), PINP (- 0.74 [- 10.42; 8.93], n = 2), and CTX-I (- 0.69 [- 9.61; 8.23], n = 2), but with very wide confidence intervals. Three potentially relevant ongoing trials were identified via registries. No data were found for fracture healing or fracture outcomes. It remains unclear whether EX has an additive impact to PT in people with osteoporosis. High-quality, adequately powered, targetted RCTs are required. PROTOCOL REGISTRATION: PROSPERO CRD42022336132.
Collapse
Affiliation(s)
- Ann-Kathrin Schumm
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule Für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany.
| | - Emma A Craige
- Appleton Institute, Central Queensland University, Adelaide, SA, 5034, Australia
| | - Nitin Kumar Arora
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule Für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| | - Patrick J Owen
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, 3220, Australia
| | - Niamh L Mundell
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, 3220, Australia
| | - Bjoern Buehring
- Ruhr Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Krankenhaus St. Josef, Bergstraße 6-12, 42105, Wuppertal, Germany
| | - Uwe Maus
- Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel L Belavy
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule Für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Abdelrahman S, Purcell M, Rantalainen T, Coupaud S, Ireland A. Regional and temporal variation in bone loss during the first year following spinal cord injury. Bone 2023; 171:116726. [PMID: 36871898 DOI: 10.1016/j.bone.2023.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Osteoporosis is a consequence of spinal cord injury (SCI) that leads to fragility fractures. Visual assessment of bone scans suggests regional variation in bone loss, but this has not been objectively characterised. In addition, substantial inter-individual variation in bone loss following SCI has been reported but it is unclear how to identify fast bone losers. Therefore, to examine regional bone loss, tibial bone parameters were assessed in 13 individuals with SCI (aged 16-76 years). Peripheral quantitative computed tomography scans at 4 % and 66 % tibia length were acquired within 5 weeks, 4 months and 12 months postinjury. Changes in total bone mineral content (BMC), and bone mineral density (BMD) were assessed in ten concentric sectors at the 4 % site. Regional changes in BMC and cortical BMD were analysed in thirty-six polar sectors at the 66 % site using linear mixed effects models. Relationships between regional and total loss at 4 months and 12 months timepoints were assessed using Pearson correlation. At the 4 % site, total BMC (P = 0.001) decreased with time. Relative losses were equal across the sectors (all P > 0.1). At the 66 % site, BMC and cortical BMD absolute losses were similar (all P > 0.3 and P > 0.05, respectively) across polar sectors, but relative loss was greatest in the posterior region (all P < 0.01). At both sites, total BMC loss at 4 months was strongly positively associated with the total loss at 12 months (r = 0.84 and r = 0.82 respectively, both P < 0.001). This correlation was stronger than those observed with 4-month BMD loss in several radial and polar sectors (r = 0.56-0.77, P < 0.05). These results confirm that SCI-induced bone loss varies regionally in the tibial diaphysis. Moreover, bone loss at 4 months is a strong predictor of total loss 12 months postinjury. More studies on larger populations are required to confirm these findings.
Collapse
Affiliation(s)
- Shima Abdelrahman
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, United Kingdom; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom; Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Timo Rantalainen
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Finland
| | - Sylvie Coupaud
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, United Kingdom; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Alex Ireland
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
4
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Inhibition of TGF-β Signaling Attenuates Disuse-induced Trabecular Bone Loss After Spinal Cord Injury in Male Mice. Endocrinology 2022; 163:bqab230. [PMID: 34791098 DOI: 10.1210/endocr/bqab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Bone loss is one of the most common complications of immobilization after spinal cord injury (SCI). Whether transforming growth factor (TGF)-β signaling plays a role in SCI-induced disuse bone loss has not been determined. Thus, 16-week-old male mice underwent sham or spinal cord contusion injury to cause complete hindlimb paralysis. Five days later, 10 mg/kg/day control (IgG) or anti-TGF-β1,2,3 neutralizing antibody (1D11) was administered twice weekly for 4 weeks. Femurs were examined by micro-computed tomography (micro-CT) scanning and histology. Bone marrow (BM) supernatants were analyzed by enzyme-linked immunosorbent assay for levels of procollagen type 1 intact N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase (TRAcP-5b), receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), and prostaglandin E2 (PGE2). Distal femoral micro-CT analysis showed that SCI-1D11 mice had significantly (P < .05) attenuated loss of trabecular fractional bone volume (123% SCI-1D11 vs 69% SCI-IgG), thickness (98% vs 81%), and connectivity (112% vs 69%) and improved the structure model index (2.1 vs 2.7). Histomorphometry analysis revealed that osteoclast numbers were lower in the SCI-IgG mice than in sham-IgG control. Biochemically, SCI-IgG mice had higher levels of P1NP and PGE2 but similar TRAcP-5b and RANKL/OPG ratio to the sham-IgG group. The SCI-1D11 group exhibited higher levels of P1NP but similar TRAcP-5b, RANKL/OPG ratio, and PGE2 to the sham-1D11 group. Furthermore, 1D11 treatment prevented SCI-induced hyperphosphorylation of tau protein in osteocytes, an event that destabilizes the cytoskeleton. Together, inhibition of TGF-β signaling after SCI protects trabecular bone integrity, likely by balancing bone remodeling, inhibiting PGE2 elevation, and preserving the osteocyte cytoskeleton.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation Medicine and Human Performance, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Institute for Systems Biomedicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation Medicine and Human Performance, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Institute for Systems Biomedicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Characteristics of Lumbar Bone Density in Middle-Aged and Elderly Subjects: A Correlation Study between T-Scores Determined by the DEXA Scan and Hounsfield Units from CT. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5443457. [PMID: 34956572 PMCID: PMC8702328 DOI: 10.1155/2021/5443457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/01/2021] [Indexed: 12/03/2022]
Abstract
Purpose To describe the characteristics of lumbar bone density in middle-aged and elderly subjects and explore whether there is a correlation between computed tomography (CT) values and the bone mineral density (BMD) T-scores of the lumbar vertebral cancellous bone. Methods Forty-two subjects, including 25 males and 17 females, with a mean age of 56 years, who underwent BMD measurement and lumbar multislice spiral CT scan at the China Rehabilitation Research Center from January 2019 to December 2019 were selected. Dual-energy X-ray absorptiometry (DEXA) was applied to obtain the total BMD T-scores of the lumbar L1–L4 vertebrae. Results The CT values decreased from L1 to L4 and were 145.91 ± 8.686 HU, 143.18 ± 8.598 HU, 137.39 ± 8.276 HU, and 135.23 ± 8.219 HU, respectively. The total CT value of L1–L4 was 140.43 ± 4.199 HU. The mean total BMD T-score of L1–L4 was −0.94. The CT values of the L1–L4 vertebrae were positively correlated with the total BMD T-scores of L1–L4 (r = 0.349, P < 0.001). The CT value of the left third of the same vertebrae was the highest, and there was a strong positive correlation between the regional CT value of the lumbar spine and the entire vertebra CT values (r > 0.7). Conclusion The CT values of the lumbar spine can assist the measurement of the T-scores of lumbar BMD, which could aid in early opportunistic screening for osteopenia and preventing osteoporosis and vertebral compression fractures in middle-aged and elderly subjects. This trial is registered with ChiCTR2100049571.
Collapse
|
6
|
Edwards WB, Haider IT, Simonian N, Barroso J, Schnitzer TJ. Durability and delayed treatment effects of zoledronic acid on bone loss after spinal cord injury: a randomized, controlled trial. J Bone Miner Res 2021; 36:2127-2138. [PMID: 34278611 DOI: 10.1002/jbmr.4416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
A single infusion of zoledronic acid (ZOL) after acute spinal cord injury (SCI) attenuates bone loss at the hip (proximal femur) and knee (distal femur and proximal tibia) for at least 6 months. The objective of this study was to examine the effects of timing and frequency of ZOL over 2 years. In this double-blind, placebo-controlled trial, we randomized 60 individuals with acute SCI (<120 days of injury) to receive either ZOL 5-mg infusion (n = 30) or placebo (n = 30). After 12 months, groups were again randomized to receive ZOL or placebo, resulting in four treatment groups for year 2: (i) ZOL both years; (ii) ZOL year 1, placebo year 2; (iii) placebo year 1, ZOL year 2; and (iv) placebo both years. Our primary outcome was bone loss at 12 months; compared to placebo, a single infusion of ZOL attenuated bone loss at the proximal femur, where median changes relative to baseline were -1.7% to -2.2% for ZOL versus -11.3% to -12.8% for placebo (p < 0.001). Similarly, the distal femur and proximal tibia showed changes of -4.7% to -9.6% for ZOL versus -8.9% to -23.0% for placebo (p ≤ 0.042). After 24 months, differences were significant at the proximal femur only (-3.2% to -6.0% for ZOL vs. -16.8% to -21.8% for placebo; p ≤ 0.018). Although not statistically significant, median bone density losses suggested some benefit from two annual infusions compared to a single baseline infusion, as well as from a single infusion 12 months after baseline compared to 2 years of placebo; therefore, further investigation in the 12-month to 24-month treatment window is warranted. No unanticipated adverse events associated with drug treatment were observed. In summary, ZOL 5-mg infusion after acute SCI was well-tolerated and may provide an effective therapeutic approach to prevent bone loss in the first few years following SCI. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joana Barroso
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|