1
|
Comparative Analysis of Three Bradyrhizobium diazoefficiens Genomes Show Specific Mutations Acquired during Selection for a Higher Motility Phenotype and Adaption to Laboratory Conditions. Microbiol Spectr 2021; 9:e0056921. [PMID: 34762518 PMCID: PMC8585493 DOI: 10.1128/spectrum.00569-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial genomes are being extensively studied using next-generation sequencing technologies in order to understand the changes that occur under different selection regimes. In this work, the number and type of mutations that have occurred in three Bradyrhizobium diazoefficiens USDA 110T strains under laboratory conditions and during selection for a more motile phenotypic variant were analyzed. Most of the mutations found in both processes consisted of single nucleotide polymorphisms, single nucleotide deletions or insertions. In the case of adaptation to laboratory conditions, half of the changes occurred within intergenic regions, and around 80% were insertions. When the more motile phenotypic variant was evaluated, eight single nucleotide polymorphisms and an 11-bp deletion were found, although none of them was directly related to known motility or chemotaxis genes. Two mutants were constructed to evaluate the 11-bp deletion affecting the alpha subunit of 2-oxoacid:acceptor oxidoreductase (AAV28_RS30705-blr6743). The results showed that this single deletion was not responsible for the enhanced motility phenotype. IMPORTANCE The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains. In the present work, we sequenced and compared the genomes of strains derived from a parent strain, B. diazoefficiens USDA 110, that has undergone processes of repeated culture in the laboratory environment, or phenotypic selection toward antibiotic resistance and enhanced motility. Our results represent the first analysis in B. diazoefficiens that provides insights into the specific mutations that are acquired during these processes.
Collapse
|
2
|
Deimmunization of flagellin for repeated administration as a vaccine adjuvant. NPJ Vaccines 2021; 6:116. [PMID: 34518537 PMCID: PMC8438039 DOI: 10.1038/s41541-021-00379-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
Flagellin, a protein-based Toll-like receptor agonist, is a versatile adjuvant applicable to wide spectrum of vaccines and immunotherapies. Given reiterated treatments of immunogenic biopharmaceuticals should lead to antibody responses precluding repeated administration, the development of flagellin not inducing specific antibodies would greatly expand the chances of clinical applications. Here we computationally identified immunogenic regions in Vibrio vulnificus flagellin B and deimmunized by simply removing a B cell epitope region. The recombinant deimmunized FlaB (dFlaB) maintains stable TLR5-stimulating activity. Multiple immunization of dFlaB does not induce FlaB-specific B cell responses in mice. Intranasally co-administered dFlaB with influenza vaccine enhanced strong Ag-specific immune responses in both systemic and mucosal compartments devoid of FlaB-specific Ab production. Notably, dFlaB showed better protective immune responses against lethal viral challenge compared with wild type FlaB. The deimmunizing B cell epitope deletion did not compromise stability and adjuvanticity, while suppressing unwanted antibody responses that may negatively affected vaccine antigen-directed immune responses in repeated vaccinations. We explain the underlying mechanism of deimmunization by employing molecular dynamics analysis.
Collapse
|
3
|
Malán AK, Tuleski T, Catalán AI, de Souza EM, Batista S. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism. Appl Microbiol Biotechnol 2021; 105:7339-7352. [PMID: 34499201 DOI: 10.1007/s00253-021-11507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Herbaspirillum seropedicae is a β-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD+-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD+-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.
Collapse
Affiliation(s)
- Ana Karen Malán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Thalita Tuleski
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Ana Inés Catalán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Silvia Batista
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
4
|
Dual Control of Flagellar Synthesis and Exopolysaccharide Production by FlbD-FliX Class II Regulatory Proteins in Bradyrhizobium diazoefficiens. J Bacteriol 2021; 203:JB.00403-20. [PMID: 33468586 DOI: 10.1128/jb.00403-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, has two independent flagellar systems: a single subpolar flagellum and several lateral flagella. Each flagellum is a very complex organelle composed of 30 to 40 different proteins located inside and outside the cell whereby flagellar gene expression must be tightly controlled. Such control is achieved by a hierarchy of regulators that ensure the timing of synthesis and the allocation of the different flagellar substructures. Previously, we analyzed the gene organization, expression, and function of the lateral flagellar system. Here, we studied the role of the response regulator FlbD and its trans-acting regulator FliX in the regulation of subpolar flagellar genes. We found that the LP-ring, distal rod, and hook of the subpolar flagellum were tightly controlled by FlbD and FliX. Furthermore, we obtained evidence for the existence of cross-regulation between these gene products and the expression of LafR, the master regulator of lateral flagella. In addition, we observed that extracellular polysaccharide production and biofilm formation also responded to these flagellar regulators. In this regard, FlbD might contribute to the switch between the planktonic and sessile states.IMPORTANCE Most environmental bacteria switch between two free-living states: planktonic, in which individual cells swim propelled by flagella, and sessile, in which bacteria form biofilms. Apart from being essential for locomotion, the flagellum has accessory functions during biofilm formation. The synthesis of flagella is a highly regulated process, and coordination with accessory functions requires the interconnection of various regulatory networks. Here, we show the role of class II regulators involved in the synthesis of the B. diazoefficiens subpolar flagellum and their possible participation in cross-regulation with the lateral flagellar system and exopolysaccharide production. These findings highlight the coordination of the synthetic processes of external structures, such as subpolar and lateral flagella, with exopolysaccharides, which are the main component of the biofilm matrix.
Collapse
|
5
|
Albicoro FJ, Draghi WO, Martini MC, Salas ME, Torres Tejerizo GA, Lozano MJ, López JL, Vacca C, Cafiero JH, Pistorio M, Bednarz H, Meier D, Lagares A, Niehaus K, Becker A, Del Papa MF. The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. J Biotechnol 2021; 329:80-91. [PMID: 33539896 DOI: 10.1016/j.jbiotec.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023]
Abstract
The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.
Collapse
Affiliation(s)
- Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María C Martini
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María E Salas
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - G A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - José L López
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan H Cafiero
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hanna Bednarz
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Doreen Meier
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Karsten Niehaus
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - M F Del Papa
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
6
|
Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System. J Bacteriol 2020; 202:JB.00708-19. [PMID: 31843800 DOI: 10.1128/jb.00708-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
Collapse
|
7
|
Catalán AI, Malan AK, Ferreira F, Gill PR, Batista S. Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate production by a prpC mutant of Herbaspirillum seropedicae Z69. J Biotechnol 2018; 286:36-44. [DOI: 10.1016/j.jbiotec.2018.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/25/2023]
|
8
|
Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti. mSystems 2017; 2:mSystems00035-17. [PMID: 28905000 PMCID: PMC5596199 DOI: 10.1128/msystems.00035-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms. Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti, we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis (phbA, phbB, phbAB, and phbC), PHB degradation (bdhA, phaZ, and acsA2), and glycogen synthesis (glgA1). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms. Author Video: An author video summary of this article is available.
Collapse
|
9
|
Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, Hedden P, Rojas MC, Peters RJ. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat Chem Biol 2016; 13:69-74. [PMID: 27842068 DOI: 10.1038/nchembio.2232] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022]
Abstract
Gibberellins (GAs) are crucial phytohormones involved in many aspects of plant growth and development, including plant-microbe interactions, which has led to GA production by plant-associated fungi and bacteria as well. While the GA biosynthetic pathways in plants and fungi have been elucidated and found to have arisen independently through convergent evolution, little has been uncovered about GA biosynthesis in bacteria. Some nitrogen-fixing, symbiotic, legume-associated rhizobia, including Bradyrhizobium japonicum-the symbiont of soybean-and Sinorhizobium fredii-a broad-host-nodulating species-contain a putative GA biosynthetic operon, or gene cluster. Through functional characterization of five unknown genes, we demonstrate that this operon encodes the enzymes necessary to produce GA9, thereby elucidating bacterial GA biosynthesis. The distinct nature of these enzymes indicates that bacteria have independently evolved a third biosynthetic pathway for GA production. Furthermore, our results also reveal a central biochemical logic that is followed in all three convergently evolved GA biosynthetic pathways.
Collapse
Affiliation(s)
- Ryan S Nett
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Mariana Montanares
- Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ariana Marcassa
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Xuan Lu
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Raimund Nagel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Peter Hedden
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Maria Cecilia Rojas
- Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Huang YC, Lin YC, Wei CF, Deng WL, Huang HC. The pathogenicity factor HrpF interacts with HrpA and HrpG to modulate type III secretion system (T3SS) function and t3ss expression in Pseudomonas syringae pv. averrhoi. MOLECULAR PLANT PATHOLOGY 2016; 17:1080-94. [PMID: 26638129 PMCID: PMC6638529 DOI: 10.1111/mpp.12349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/05/2015] [Accepted: 11/29/2015] [Indexed: 05/08/2023]
Abstract
To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS-dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non-host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild-type results in delayed HR and reduced t3ss expression. The results of protein-protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF-HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface.
Collapse
Affiliation(s)
- Yi-Chiao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, 40227, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yuan-Chuen Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chia-Fong Wei
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsiou-Chen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
11
|
Vanderlinde EM, Hynes MF, Yost CK. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol 2014; 16:205-17. [PMID: 23859230 DOI: 10.1111/1462-2920.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/24/2023]
Abstract
Homoserine represents a substantial component of pea root exudate that may be important for plant-microbe interactions in the rhizosphere. We identified a gene cluster on plasmid pRL8JI that is required for homoserine utilization by Rhizobium leguminosarum bv. viciae. The genes are arranged as two divergently expressed predicted operons that were induced by L-homoserine, pea root exudate, and were expressed on pea roots. A mutation in gene pRL80083 that prevented utilization of homoserine as a sole carbon and energy source affected the mutant's ability to nodulate peas and lentils competitively. The homoserine gene cluster was present in approximately 47% of natural R. leguminosarum isolates (n = 59) and was strongly correlated with homoserine utilization. Conjugation of pRL8JI to R. leguminosarum 4292 or Agrobacterium tumefaciens UBAPF2 was sufficient for homoserine utilization. The presence of L-homoserine increased conjugation efficiency of pRL8JI from R. leguminosarum to a pRL8JI-cured derivative of R. leguminosarum 1062 and to A. tumefaciens UBAPF2, and induced expression of the plasmid transfer gene trbB; however, there was no difference in conjugation efficiency or trbB expression with A. tumefaciens UBAPF2pRL8-Gm as the donor suggesting that other genes in R. leguminosarum may contribute to regulating conjugation of pRL8 in the presence of homoserine.
Collapse
|
12
|
The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 2012; 195:202-12. [PMID: 23123907 DOI: 10.1128/jb.01758-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.
Collapse
|
13
|
Mutation of a broadly conserved operon (RL3499-RL3502) from Rhizobium leguminosarum biovar viciae causes defects in cell morphology and envelope integrity. J Bacteriol 2011; 193:2684-94. [PMID: 21357485 DOI: 10.1128/jb.01456-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA(+) ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella.
Collapse
|
14
|
Hao N, Yan M, Zhou H, Liu HM, Cai P, Ouyang PK. The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810060013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wang C, Kemp J, Da Fonseca IO, Equi RC, Sheng X, Charles TC, Sobral BWS. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:153-160. [PMID: 20064059 DOI: 10.1094/mpmi-23-2-0153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial two-component regulatory systems (TCS) are common components of complex regulatory networks and cascades. In Sinorhizobium meliloti, the TCS ExoS/ChvI controls exopolysaccharide succinoglycan production and flagellum biosynthesis. Although this system plays a crucial role in establishing the symbiosis between S. meliloti and its host plant, it is not well characterized. Attempts to generate complete loss-of-function mutations in either exoS or chvI in S. meliloti have been unsuccessful; thus, it was previously suggested that exoS or chvI are essential genes for bacterial cell growth. We constructed a chvI mutant by completely deleting the open reading frame encoding this gene. The mutant strain failed to grow on complex medium, exhibited lower tolerance to acidic condition, produced significantly less poly-3-hydroxybutyrate than the wild type, was hypermotile, and exhibited an altered lipopolysaccharide profile. In addition, this mutant was defective in symbiosis with Medicago truncatula and M. sativa (alfalfa), although it induced root hair deformation as efficiently as the wild type. Together, our results demonstrate that ChvI is intimately involved in regulatory networks involving the cell envelope and metabolism; however, its precise role within the regulatory network remains to be determined.
Collapse
Affiliation(s)
- Chunxia Wang
- Virginia Bioinformatics Instutue, Virginia Polytechnic Institute and STate University, Blacksburg 24061, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 2007; 189:9050-6. [PMID: 17921298 DOI: 10.1128/jb.01190-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.
Collapse
|
17
|
Wang C, Meek DJ, Panchal P, Boruvka N, Archibald FS, Driscoll BT, Charles TC. Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 2006; 72:384-91. [PMID: 16391068 PMCID: PMC1352230 DOI: 10.1128/aem.72.1.384-391.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to initiate investigation of the genetics of bacterial poly-3-hydroxybutyrate (PHB) metabolism at the community level. We constructed metagenome libraries from activated sludge and soil microbial communities in the broad-host-range IncP cosmid pRK7813. Several unique clones were isolated from these libraries by functional heterologous complementation of a Sinorhizobium meliloti bdhA mutant, which is unable to grow on the PHB cycle intermediate D-3-hydroxybutyrate due to absence of the enzyme D-3-hydroxybutyrate dehydrogenase activity. Clones that conferred D-3-hydroxybutyrate utilization on Escherichia coli were also isolated. Although many of the S. meliloti bdhA mutant complementing clones restored D-3-hydroxybutyrate dehydrogenase activity to the mutant host, for some of the clones this activity was not detectable. This was also the case for almost all of the clones isolated in the E. coli selection. Further analysis was carried out on clones isolated in the S. meliloti complementation. Transposon mutagenesis to locate the complementing genes, followed by DNA sequence analysis of three of the genes, revealed coding sequences that were broadly divergent but lay within the diversity of known short-chain dehydrogenase/reductase encoding genes. In some cases, the amino acid sequence identity between pairs of deduced BdhA proteins was <35%, a level at which detection by nucleic acid hybridization based methods would probably not be successful.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 2005; 187:6991-7. [PMID: 16199569 PMCID: PMC1251620 DOI: 10.1128/jb.187.20.6991-6997.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Although a majority of ars operons consist of three genes, arsR (transcriptional regulator), arsB [As(OH)3/H+ antiporter], and arsC (arsenate reductase), the S. meliloti ars operon includes an aquaglyceroporin (aqpS) in place of arsB. The presence of AqpS in an arsenic resistance operon is interesting, since aquaglyceroporin channels have previously been shown to adventitiously facilitate uptake of arsenite into cells, rendering them sensitive to arsenite. To understand the role of aqpS in arsenic resistance, S. meliloti aqpS and arsC were disrupted individually. Disruption of aqpS resulted in increased tolerance to arsenite but not arsenate, while cells with an arsC disruption showed selective sensitivity to arsenate. The results of transport experiments in intact cells suggest that AqpS is the only protein of the S. meliloti ars operon that facilitates transport of arsenite. Coexpression of S. meliloti aqpS and arsC in a strain of E. coli lacking the ars operon complemented arsenate but not arsenite sensitivity. These results imply that, when S. meliloti is exposed to environmental arsenate, arsenate enters the cell through phosphate transport systems and is reduced to arsenite by ArsC. Internally generated arsenite flows out of the cell by downhill movement through AqpS. Thus, AqpS confers arsenate resistance together with ArsC-catalyzed reduction. This is the first report of an aquaglyceroporin with a physiological function in arsenic resistance.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
19
|
Collavino M, Riccillo PM, Grasso DH, Crespi M, Aguilar M. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:742-50. [PMID: 16042020 DOI: 10.1094/mpmi-18-0742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The guaB mutant strain Rhizobium tropici CIAT8999-10T is defective in symbiosis with common bean, forming nodules that lack rhizobial content. In order to investigate the timing of the guaB requirement during the nodule formation on the host common bean by the strain CIAT899-10.T, we constructed gene fusions in which the guaB gene is expressed under the control of the symbiotic promoters nodA, bacA, and nifH. Our data indicated that the guaB is required from the early stages of nodulation because full recovery of the wild-type phenotype was accomplished by the nodA-guaB fusion. In addition, we have constructed a guaB mutant derived from Sinorhizobium meliloti 1021, and shown that, unlike R. tropici, the guaB S. meliloti mutant is auxotrophic for guanine and induces wild-type nodules on alfalfa and Medicago truncatula. The guaB R. tropici mutant also is defective in its symbiosis with Macroptilium atropurpureum and Vigna unguiculata but normal with Leucaena leucocephala. These results show that the requirement of the rhizobial guaB for symbiosis is found to be associated with host plants that form determinate type of nodules.
Collapse
Affiliation(s)
- Mónica Collavino
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentina
| | | | | | | | | |
Collapse
|