1
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
2
|
Effects of water soluble perfluorinated pollutants on phospholipids in model soil decomposer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2576-2587. [DOI: 10.1016/j.bbamem.2018.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/15/2023]
|
3
|
Wojcik A, Pawłowski M, Wydro P, Broniatowski M. Effects of Polychlorinated Pesticides and Their Metabolites on Phospholipid Organization in Model Microbial Membranes. J Phys Chem B 2018; 122:12017-12030. [DOI: 10.1021/acs.jpcb.8b08989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aneta Wojcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pawłowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Wójcik A, Perczyk P, Wydro P, Flasiński M, Broniatowski M. Interactions of Long-Chain Perfluorotelomer Alcohol and Perfluorinated Hydrocarbons with Model Decomposer Membranes. J Phys Chem B 2018; 122:7340-7352. [DOI: 10.1021/acs.jpcb.8b05194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Mundhada H, Schneider K, Christensen HB, Nielsen AT. Engineering of high yield production of L-serine in Escherichia coli. Biotechnol Bioeng 2015; 113:807-16. [PMID: 26416585 DOI: 10.1002/bit.25844] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 01/23/2023]
Abstract
L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8.3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation, the resulting strain lead to the serine production titer of 11.7 g/L with yield of 0.43 g/g glucose, which is the highest yield reported so far for any organism.
Collapse
Affiliation(s)
- Hemanshu Mundhada
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Hanne Bjerre Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Alex Toftgaard Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark.
| |
Collapse
|
6
|
Gu P, Yang F, Su T, Li F, Li Y, Qi Q. Construction of an L-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 2014; 41:1443-50. [PMID: 24997624 DOI: 10.1007/s10295-014-1476-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/16/2014] [Indexed: 12/14/2022]
Abstract
L-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, L-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce L-serine from glucose. To accumulate L-serine, sdaA encoding the L-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious L-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA (FR) , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L L-serine in batch cultivation and 8.34 g/L L-serine in fed-batch cultivation.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Aboulwafa M, Saier MH. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. MICROBIOLOGY-SGM 2013; 159:2213-2224. [PMID: 23985145 DOI: 10.1099/mic.0.070953-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permeases of the prokaryotic phosphoenolpyruvate-sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.,Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
8
|
Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 2009; 75:7718-24. [PMID: 19820143 DOI: 10.1128/aem.01959-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.
Collapse
|
9
|
Spelbrink REJ, Kolkman A, Slijper M, Killian JA, de Kruijff B. Detection and Identification of Stable Oligomeric Protein Complexes in Escherichi coli Inner Membranes. J Biol Chem 2005; 280:28742-8. [PMID: 15919657 DOI: 10.1074/jbc.m501617200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we present a new technology to detect stable oligomeric protein complexes in membranes. The technology is based on the ability of small membrane-active alcohols to dissociate the highly stable homotetrameric potassium channel KcsA. It is shown via a proteomics approach, using diagonal electrophoresis and nano-flow liquid chromatography coupled to tandem mass spectrometry, that a large number of both integral and peripheral Escherichia coli inner membrane proteins are part of stable oligomeric complexes that can be dissociated by small alcohols. This study gives insight into the composition and stability of these complexes.
Collapse
Affiliation(s)
- Robin E J Spelbrink
- Department Biochemistry of Membranes, Institute of Biomembranes and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Bogdanov M, Zhang W, Xie J, Dowhan W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 2005; 36:148-71. [PMID: 15894490 PMCID: PMC4104023 DOI: 10.1016/j.ymeth.2004.11.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 01/03/2023] Open
Abstract
We provide an overview of lipid-dependent polytopic membrane protein topogenesis, with particular emphasis on Escherichia coli strains genetically altered in their lipid composition and strategies for experimentally determining the transmembrane organization of proteins. A variety of reagents and experimental strategies are described including the use of lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by substituted cysteine site-directed chemical labeling. Employing strains in which lipid composition can be controlled temporally during membrane protein synthesis and assembly provides a means to observe dynamic changes in protein topology as a function of membrane lipid composition.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| |
Collapse
|