1
|
Mahroof M, Dar RA, Nazir R, Ali MN, Ganai BA. Valorization of rice straw and vascular aquatic weeds for sustainable prebiotic hemicellulosic autohydrolysate production: Extraction, characterization and fermentability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35744-35759. [PMID: 38744764 DOI: 10.1007/s11356-024-33611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
This study describes the extraction and characterization of the hemicellulosic autohydrolysates (HAHs) derived from rice straw (RS) and vascular aquatic weeds like Typha angustifolia (TA) and Ceretophyllum demersum (CD). It further explores their capacity to sustain the proliferation of selected lactic acid bacteria (i.e., prebiotic activity) isolated from milk samples. To fractionate HAH from RS, TA and CD hot water extraction (HWE) method was used and RS, TA, and CD biomasses yielded 6.8, 4.99 and 2.98% of HAH corresponding to the hemicellulose extraction efficiencies of 26.15 ± 0.8%, 23.76 ± 0.6%, and 18.62 ± 0.4% respectively. The chemical characterization of HAH concentrates through HPLC showed that they comprised galactose, arabinose, xylose and glucose. The total phenol content of the RS, TA and CD-derived HAH concentrates were 37.53, 56.78 and 48.08 mg GAE/g. The five lactic acid bacteria (LAB) isolates Q1B, Q2A, Q3B, G1C and G2B selected for prebiotic activity assays generated mixed responses with the highest growth in RS-HAH for Q2A and the least in TA-HAH for Q3B. Further, the isolates Q2A, Q3B, G1C, and G2B, which showed the highest growth performance, were identified through MALDI-TOF and 16S rRNA sequencing as Lactobacillus brevis. All the tested LAB isolates showed diauxic growth in crude HAH preparations to maximize the utilization of carbon resources for their proliferation. This suggests that the selected LAB isolates are efficient degraders of hemicellulosic sugars. This paves the way for the valorization of lignocellulosic biomass to produce prebiotic hemicellulosic autohydrolysate and consequently enhances environmental sustainability by improving resource efficiency.
Collapse
Affiliation(s)
- Mawish Mahroof
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rouf Ahmad Dar
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Md Niamat Ali
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
2
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
3
|
Zhang Z, Hou Q, Wang Y, Li W, Zhao H, Sun Z, Guo Z. Lactobacillus zhachilii sp. nov., a lactic acid bacterium isolated from Zha-Chili. Int J Syst Evol Microbiol 2019; 69:2196-2201. [DOI: 10.1099/ijsem.0.003362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhendong Zhang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Qiangchuan Hou
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Yurong Wang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Weicheng Li
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Huijun Zhao
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Zhihong Sun
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Zhuang Guo
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| |
Collapse
|
4
|
Abstract
Characterization of PTS-IIC, an endogenous constitutive promoter from L. lactis.. Cellobiose enhances activity from PTS-IIC promoter. PTS-IIC promoter mediates protein expression in B. subtilis and E coli Nissle 1917.
Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- GFP, green fluorescent protein
- Heterologous protein expression
- LAB, lactic acid bacteria
- LB, Luria-Bertani media
- Lactococcus lactis
- OD600, optical density at 600 nm
- PBS, phosphate buffered saline
- Probiotics
- Promoter
- RFU, relative fluorescence unit
- ccpA, catabolite control protein A
- celA, cellobiose-specific phosphor-β-glucosidase
- cre, catabolite-responsive element
- noxE, NADH oxidase promoter
- nt, nucleotide
- ptcC, cellobiose-specific PTS IIC component
Collapse
|
5
|
Solution for promoting egl 3 gene of Trichoderma reesei high-efficiency secretory expression in Escherichia coli and Lactococcus lactis. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Gandini C, Tarraran L, Kalemasi D, Pessione E, Mazzoli R. RecombinantLactococcus lactisfor efficient conversion of cellodextrins into L-lactic acid. Biotechnol Bioeng 2017; 114:2807-2817. [DOI: 10.1002/bit.26400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Gandini
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Loredana Tarraran
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Denis Kalemasi
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| |
Collapse
|
7
|
Kasarello K, Kwiatkowska-Patzer B, Lipkowski AW, Bardowski JK, Szczepankowska AK. Oral Administration of Lactococcus lactis Expressing Synthetic Genes of Myelin Antigens in Decreasing Experimental Autoimmune Encephalomyelitis in Rats. Med Sci Monit 2015; 21:1587-97. [PMID: 26026273 PMCID: PMC4462849 DOI: 10.12659/msm.892764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Multiple sclerosis is a human autoimmunological disease that causes neurodegeneration. One of the potential ways to stop its development is induction of oral tolerance, whose effect lies in decreasing immune response to the fed antigen. It was shown in animal models that administration of specific epitopes of the three main myelin proteins – myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and proteolipid protein (PLP) – results in induction of oral tolerance and suppression of disease symptoms. Use of bacterial cells to produce and deliver antigens to gut mucosa seems to be an attractive method for oral tolerance induction in treatment of diseases with autoimmune background. Material/Methods Synthetic genes of MOG35-55, MBP85-97, and PLP139-151 myelin epitopes were generated and cloned in Lactococcus lactis under a CcpA-regulated promoter. The tolerogenic effect of bacterial preparations was tested on experimental autoimmune encephalomyelitis, which is the animal model of MS. EAE was induced in rats by intradermal injection of guinea pig spinal cord homogenate into hind paws. Results Rats were administered preparations containing whole-cell lysates of L. lactis producing myelin antigens using different feeding schemes. Our study demonstrates that 20-fold, but not 4-fold, intragastric administration of autoantigen-expressing L. lactis cells under specific conditions reduces the clinical symptoms of EAE in rats. Conclusions The present study evaluated the use of myelin antigens produced in L. lactis in inhibiting the onset of experimental autoimmune encephalomyelitis in rats. Obtained results indicate that application of such recombinant cells can be an attractive method of oral tolerance induction.
Collapse
Affiliation(s)
- Kaja Kasarello
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Kwiatkowska-Patzer
- Department of Neuropeptides, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej W Lipkowski
- Department of Neuropeptides, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek K Bardowski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka K Szczepankowska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
9
|
The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Appl Environ Microbiol 2011; 77:7576-85. [PMID: 21890668 DOI: 10.1128/aem.06107-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells.
Collapse
|
10
|
Capaldo A, Walker M, Ford C, Jiranek V. β-Glucoside metabolism in Oenococcus oeni: Cloning and characterization of the phospho-β-glucosidase CelD. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang SY, Chen HC, Dai TY, Huang IN, Liu JR, Chen MJ. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. J Dairy Sci 2011; 94:623-35. [DOI: 10.3168/jds.2010-3503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022]
|
12
|
Abstract
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.
Collapse
|
13
|
Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 2010; 192:5806-12. [PMID: 20639323 DOI: 10.1128/jb.00533-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.
Collapse
|