1
|
Payá G, Bautista V, Pastor-Soler S, Camacho M, Esclapez J, Bonete MJ. Analysis of Lsm Protein-Mediated Regulation in the Haloarchaeon Haloferax mediterranei. Int J Mol Sci 2024; 25:580. [PMID: 38203750 PMCID: PMC10779274 DOI: 10.3390/ijms25010580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; (G.P.); (V.B.); (S.P.-S.); (M.C.); (J.E.)
| |
Collapse
|
2
|
Payá G, Bautista V, Camacho M, Esclapez J, Bonete MJ. Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain. Microorganisms 2023; 11:1196. [PMID: 37317170 DOI: 10.3390/microorganisms11051196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.
Collapse
Affiliation(s)
- Gloria Payá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| |
Collapse
|
3
|
Kliemt J, Jaschinski K, Soppa J. A Haloarchaeal Small Regulatory RNA (sRNA) Is Essential for Rapid Adaptation to Phosphate Starvation Conditions. Front Microbiol 2019; 10:1219. [PMID: 31231327 PMCID: PMC6560208 DOI: 10.3389/fmicb.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
The haloarchaeon Haloferax volcanii contains nearly 2800 small non-coding RNAs (sRNAs). One intergenic sRNA, sRNA132, was chosen for a detailed characterization. A deletion mutant had a growth defect and thus underscored the importance of sRNA132. A microarray analysis identified the transcript of an operon for a phosphate-specific ABC transporter as a putative target of sRNA132. Both the sRNA132 and the operon transcript accumulated under low phosphate concentrations, indicating a positive regulatory role of sRNA132. A kinetic analysis revealed that sRNA132 is essential shortly after the onset of phosphate starvation, while other regulatory processes take over after several hours. Comparison of the transcriptomes of wild-type and the sRNA132 gene deletion mutant 30 min after the onset of phosphate starvation revealed that sRNA132 controls a regulon of about 40 genes. Remarkably, the regulon included a second operon for a phosphate-specific ABC transporter, which also depended on sRNA132 for rapid induction in the absence of phosphate. Competitive growth experiments of the wild-type and ABC transporter operon deletion mutants underscored the importance of both transporters for growth at low phosphate concentrations. Northern blot analyses of four additional members of the sRNA132 regulon verified that all four transcripts depended on sRNA132 for rapid regulation after the onset of phosphate starvation. Importantly, this is the first example for the transient importance of a sRNA for any archaeal and bacterial species. In addition, this study unraveled the first sRNA regulon for haloarchaea.
Collapse
Affiliation(s)
- Jana Kliemt
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Jaschinski
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons. J Bacteriol 2016; 198:1892-901. [PMID: 27137502 DOI: 10.1128/jb.00202-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5' untranslated region (5' UTR) of <10 nucleotides (nt) and leadered transcripts with a 5' UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG(1) and AUG(2)) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG(1) is more efficient than AUG(2) for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG(1) but did not affect initiation at AUG(2), indicating that AUG(2)-initiated translation does not involve ribosome scanning from the 5' end of the transcript. Furthermore, the efficiency of AUG(2)-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG(1) and AUG(2) contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. IMPORTANCE In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for translation initiation of the sptA transcript from two in-frame start codons, raising the possibility that in haloarchaea, alternative translation initiation on one transcript functions to increase translation efficiency and/or contribute to proteome complexity.
Collapse
|
5
|
Torregrosa-Crespo J, Martínez-Espinosa RM, Esclapez J, Bautista V, Pire C, Camacho M, Richardson DJ, Bonete MJ. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study. Adv Microb Physiol 2016; 68:41-85. [PMID: 27134021 DOI: 10.1016/bs.ampbs.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.
Collapse
Affiliation(s)
| | | | - J Esclapez
- Universidad de Alicante, Alicante, Spain
| | - V Bautista
- Universidad de Alicante, Alicante, Spain
| | - C Pire
- Universidad de Alicante, Alicante, Spain
| | - M Camacho
- Universidad de Alicante, Alicante, Spain
| | | | - M J Bonete
- Universidad de Alicante, Alicante, Spain
| |
Collapse
|
6
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
7
|
Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet 2014; 10:e1004784. [PMID: 25393412 PMCID: PMC4230888 DOI: 10.1371/journal.pgen.1004784] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes. The ability to adjust to changing osmotic conditions (osmoadaptation) is crucial to the survival of organisms across the tree of life. However, significant gaps still exist in our understanding of this important phenomenon. To help fill some of these gaps, we have produced high-quality draft genomes for 59 osmoadaptation “experts” (extreme halophiles of the euryarchaeal family Halobacteriaceae). We describe the dispersal of osmoadaptive protein families across the haloarchaeal evolutionary tree. We use this data to suggest a generalized model for haloarchaeal ion transport in response to changing osmotic conditions, including proposed new mechanisms for magnesium and chloride accumulation. We describe the evolutionary expansion and differentiation of haloarchaeal general transcription factor families and discuss their potential for enabling rapid adaptation to environmental fluxes. Lastly, we challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. This result highlights the power of our dataset for making evolutionary inferences, a feature which will make it useful to the broader evolutionary community. We distribute our genomic dataset through a user-friendly graphical interface.
Collapse
|
8
|
Feng J, Wang J, Zhang Y, Du X, Xu Z, Wu Y, Tang W, Li M, Tang B, Tang XF. Proteomic analysis of the secretome of haloarchaeon Natrinema sp. J7-2. J Proteome Res 2014; 13:1248-58. [PMID: 24512091 DOI: 10.1021/pr400728x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although in silico predictions have revealed that haloarchaea can be distinguished from other organisms in that the Tat pathway is used more extensively than the Sec pathway for haloarchaeal protein secretion, only a few haloarchaeal-secreted proteins have been experimentally confirmed. Here, the culture supernatant and membrane fraction of the haloarchaeon Natrinema sp. J7-2 grown at 23% salt concentration were subjected to RPLC-ESI-MS/MS analysis. In total, 46 predicted Tat substrates, 14 predicted Sec substrates, and 3 class III signal peptide-bearing proteins were detected. Approximately 65% of the detected Tat substrates contain lipoboxes, emphasizing the role of the Tat pathway in haloarchaeal lipoprotein secretion. Most of the detected Tat substrates are extracellular substrate (solute)-binding proteins and redox proteins. Despite the small number of Sec substrates, two of them, a cell surface glycoprotein and a putative lipoprotein carrier protein, were identified to be high-abundance secreted proteins. While limited proteins were detected in the culture supernatant, most of the secreted proteins were found in the membrane fraction. The anchoring of secreted proteins to the cell surface via a lipobox or a PGF-CTERM seems to be an adaptation strategy of haloarchaea to handle the harsh extracellular environment. Additionally, ∼15% of the integral membrane proteins (IMPs) detected in the membrane fraction possess putative Sec signal peptides or signal anchors, implying that the Sec pathway is important for membrane insertion of IMPs. This is the first report to describe the experimental secretome of haloarchaea and provide new information for better understanding of haloarchaeal protein secretion patterns.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tripepi M, Esquivel RN, Wirth R, Pohlschröder M. Haloferax volcanii cells lacking the flagellin FlgA2 are hypermotile. MICROBIOLOGY-SGM 2013; 159:2249-2258. [PMID: 23989184 DOI: 10.1099/mic.0.069617-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Motility driven by rotational movement of flagella allows bacteria and archaea to seek favourable conditions and escape toxic ones. However, archaeal flagella share structural similarities with bacterial type IV pili rather than bacterial flagella. The Haloferax volcanii genome contains two flagellin genes, flgA1 and flgA2. While FlgA1 has been shown to be a major flagellin, the function of FlgA2 is elusive. In this study, it was determined that although FlgA2 by itself does not confer motility to non-motile ΔflgA1 Hfx. volcanii, a subset of these mutant cells contains a flagellum. Consistent with FlgA2 being assembled into functional flagella, FlgA1 expressed from a plasmid can only complement a ΔflgA1 strain when co-expressed with chromosomal or plasmid-encoded FlgA2. Surprisingly, a mutant strain lacking FlgA2, but expressing chromosomally encoded FlgA1, is hypermotile, a phenotype that is accompanied by an increased number of flagella per cell, as well as an increased flagellum length. Site-directed mutagenesis resulting in early translational termination of flgA2 suggests that the hypermotility of the ΔflgA2 strain is not due to transcriptional regulation. This, and the fact that plasmid-encoded FlgA2 expression in a ΔflgA2 strain does not reduce its hypermotility, suggests a possible regulatory role for FlgA2 that depends on the relative abundance of FlgA1. Taken together, our results indicate that FlgA2 plays both structural and regulatory roles in Hfx. volcanii flagella-dependent motility. Future studies will build upon the data presented here to elucidate the significance of the hypermotility of this ΔflgA2 mutant, and will illuminate the regulation and function of archaeal flagella.
Collapse
Affiliation(s)
- Manuela Tripepi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rianne N Esquivel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reinhard Wirth
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31D-93053 Regensburg, Germany
| | | |
Collapse
|
10
|
Kandiba L, Eichler J. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history. FEMS Microbiol Lett 2013; 345:110-20. [PMID: 23746269 DOI: 10.1111/1574-6968.12193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022] Open
Abstract
Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.
Collapse
Affiliation(s)
- Lina Kandiba
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | | |
Collapse
|
11
|
Utilization of virus φCh1 elements to establish a shuttle vector system for Halo(alkali)philic Archaea via transformation of Natrialba magadii. Appl Environ Microbiol 2013; 79:2741-8. [PMID: 23416999 DOI: 10.1128/aem.03287-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the study described here, we successfully developed a transformation system for halo(alkali)philic members of the Archaea. This transformation system comprises a series of Natrialba magadii/Escherichia coli shuttle vectors based on a modified method to transform halophilic members of the Archaea and genomic elements of the N. magadii virus Ch1. The shuttle vector pRo-5, based on the repH-containing region of Ch1, stably replicated in E. coli and N. magadii and in several halophilic and haloalkaliphilic members of the Archaea not transformable so far. The Ch1 operon ORF53/ORF54 (repH) was essential for pRo-5 replication and was thus identified as the minimal replication origin. The plasmid allowed homologous and heterologous gene expression, as exemplified by the expression of Ch1 ORF3452, which encodes a structural protein, and the reporter gene bgaH of Haloferax lucentense in N. magadii. The new transformation/vector system will facilitate genetic studies within N. magadii and other haloalkaliphilic archaea and will allow the detailed characterization of the gene functions of N. magadii virus Ch1 in their extreme environments.
Collapse
|
12
|
Karadzic I, Maupin-Furlow J, Humbard M, Prunetti L, Singh P, Goodlett DR. Chemical cross-linking, mass spectrometry, and in silico modeling of proteasomal 20S core particles of the haloarchaeon Haloferax volcanii. Proteomics 2012; 12:1806-14. [PMID: 22623373 DOI: 10.1002/pmic.201100260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A fast and accurate method is reported to generate distance constraints between juxtaposited amino acids and to validate molecular models of halophilic protein complexes. Proteasomal 20S core particles (CPs) from the haloarchaeon Haloferax volcanii were used to investigate the quaternary structure of halophilic proteins based on their symmetrical, yet distinct subunit composition. Proteasomal CPs are cylindrical barrel-like structures of four-stacked homoheptameric rings of α- and β-type subunits organized in α(7)β(7) β(7)α(7) stoichiometry. The CPs of H. volcanii are formed from a single type of β subunit associated with α1 and/or α2 subunits. Tandem affinity chromatography and new genetic constructs were used to separately isolate α1(7)β(7)β(7)α1(7) and α2(7)β(7)β(7)α2(7) CPs from H. volcanii. Chemically cross-linked peptides of the H. volcanii CPs were analyzed by high-performance mass spectrometry and an open modification search strategy to first generate and then to interpret the resulting tandem mass spectrometric data. Distance constraints obtained by chemical cross-linking mass spectrometry, together with the available structural data of nonhalophilic CPs, facilitated the selection of accurate models of H. volcanii proteasomal CPs composed of α1-, α2-, and β-homoheptameric rings from several different possible structures from Protein Data Bank.
Collapse
Affiliation(s)
- Ivanka Karadzic
- Department of Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
13
|
Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:602408. [PMID: 22190865 PMCID: PMC3235422 DOI: 10.1155/2011/602408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022]
Abstract
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.
Collapse
|
14
|
Barsanti L, Evangelista V, Passarelli V, Frassanito AM, Gualtieri P. Fundamental questions and concepts about photoreception and the case of Euglena gracilis. Integr Biol (Camb) 2011; 4:22-36. [PMID: 22081035 DOI: 10.1039/c1ib00115a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to sense light can be considered the most fundamental and presumably the most ancient property of visual systems. This ability is the basis of phototaxis, one of the most striking behavioral responses of motile photosynthetic microorganisms (i.e. microalgae) to light stimuli, which allows them to move toward or away directional light. In order to fully exploit the information content of light (intensity, direction, distribution) microorganisms need proper perceiving devices, termed photoreceptors, which must act as sensors, to perceive wavelength and direction of light, as transducers, to convert the light signal into chemical and/or electrical information, but also as amplifiers and eventually as transmitters. This review describes the universal structural, behavioral and physiological features necessary for the proper functioning of these devices in algae, and how these features have been investigated by means of different analytical techniques such as for example microspectroscopy, digital fluorescence microscopy, two photons FLIM. The insight of the photoreceptive response mechanism is explained using the unicellular alga Euglena gracilis, in which the different structural, behavioral and physiological features combine to achieve a concerted, efficient response to light stimuli.
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, CNR, via Moruzzi 1, 56124 Pisa, Italy
| | | | | | | | | |
Collapse
|
15
|
Jantzer K, Zerulla K, Soppa J. Phenotyping in the archaea: optimization of growth parameters and analysis of mutants of Haloferax volcanii. FEMS Microbiol Lett 2011; 322:123-30. [PMID: 21692831 DOI: 10.1111/j.1574-6968.2011.02341.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A method to grow the halophilic archaeon Haloferax volcanii in microtiter plates has been optimized and now allows the parallel generation of very reproducible growth curves. The doubling time in a synthetic medium with glucose is around 6 h. The method was used to optimize glucose and casamino acid concentrations, to clarify carbon source usage and to analyze vitamin dependence. The characterization of osmotolerance revealed that after a lag phase of 24 h, H. volcanii is able to grow at salt concentrations as low as 0.7 M NaCl, much lower than the 1.4 M NaCl described as the lowest concentration until now. The application of oxidative stresses showed that H. volcanii exhibits a reaction to paraquat that is delayed by about 10 h. Surprisingly, only one of two amino acid auxotrophic mutants could be fully supplemented by the addition of the respective amino acid. Analysis of eight sRNA gene deletion mutants exemplified that the method can be applied for bona fide phenotyping of mutant collections. This method for the parallel analysis of many cultures contributes towards making H. volcanii an archaeal model species for functional genomic approaches.
Collapse
Affiliation(s)
- Katharina Jantzer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt a.M., Germany
| | | | | |
Collapse
|
16
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
17
|
Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS. Adaptation of cells to new environments. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:544-61. [PMID: 21197660 DOI: 10.1002/wsbm.136] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The evolutionary success of an organism is a testament to its inherent capacity to keep pace with environmental conditions that change over short and long periods. Mechanisms underlying adaptive processes are being investigated with renewed interest and excitement. This revival is partly fueled by powerful technologies that can probe molecular phenomena at a systems scale. Such studies provide spectacular insight into the mechanisms of adaptation, including rewiring of regulatory networks via natural selection of horizontal gene transfers, gene duplication, deletion, readjustment of kinetic parameters, and myriad other genetic reorganizational events. Here, we discuss advances in prokaryotic systems biology from the perspective of evolutionary principles that have shaped regulatory networks for dynamic adaptation to environmental change.
Collapse
Affiliation(s)
- Aaron N Brooks
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
18
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
19
|
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 2009; 284:27290-303. [PMID: 19584053 DOI: 10.1074/jbc.m109.003814] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathway of D-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198-6207). Here we report a comprehensive study of the complete D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following (13)C-labeling patterns of proteinogenic amino acids after growth on [(13)C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that D-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate alpha-ketoglutarate, involving D-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and alpha-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal D-xylose degradation pathway that differs from the classical D-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to alpha-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The powerful combination of genetic and biochemical analysis has provided many key insights into the structure and function of the chromosomal DNA replication machineries of bacterial and eukaryotic cells. In contrast, in the archaea, biochemical studies have dominated, mainly due to the absence of efficient genetic systems for these organisms. This situation is changing, however, and, in this regard, the genetically tractable haloarchaea Haloferax volcanii and Halobacterium sp. NRC-1 are emerging as key models. In the present review, I give an overview of the components of the replication machinery in the haloarchaea, with particular emphasis on the protein factors presumed to travel with the replication fork.
Collapse
|
21
|
Abstract
In recent years, sRNAs (small non-coding RNAs) have been found to be abundant in eukaryotes and bacteria and have been recognized as a novel class of gene expression regulators. In contrast, much less is known about sRNAs in archaea, except for snoRNAs (small nucleolar RNAs) that are involved in the modification of bases in stable RNAs. Therefore bioinformatic and experimental RNomics approaches were undertaken to search for the presence of sRNAs in the model archaeon Haloferax volcanii, resulting in more than 150 putative sRNA genes being identified. Northern blot analyses were used to study (differential) expression of sRNA genes. Several chromosomal deletion mutants of sRNA genes were generated and compared with the wild-type. It turned out that two sRNAs are essential for growth at low salt concentrations and high temperatures respectively, and one is involved in the regulation of carbon metabolism. Taken together, it could be shown that sRNAs are as abundant in H. volcanii as they are in well-studied bacterial species and that they fulfil important biological roles under specific conditions.
Collapse
|
22
|
Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants. J Microbiol Methods 2008; 75:201-4. [DOI: 10.1016/j.mimet.2008.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/17/2022]
|
23
|
Yurist-Doutsch S, Abu-Qarn M, Battaglia F, Morris HR, Hitchen PG, Dell A, Eichler J. AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol Microbiol 2008; 69:1234-45. [PMID: 18631242 DOI: 10.1111/j.1365-2958.2008.06352.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins in all three domains of life can experience N-glycosylation. The steps involved in the archaeal version of this post-translational modification remain largely unknown. Hence, as the next step in ongoing efforts to identify components of the N-glycosylation pathway of the halophilic archaeon Haloferax volcanii, the involvement of three additional gene products in the biosynthesis of the pentasaccharide decorating the S-layer glycoprotein was demonstrated. The genes encoding AglF, AglI and AglG are found immediately upstream of the gene encoding the archaeal oligosaccharide transferase, AglB. Evidence showing that AglF and AglI are involved in the addition of the hexuronic acid found at position three of the pentasaccharide is provided, while AglG is shown to contribute to the addition of the hexuronic acid found at position two. Given their proximities in the H. volcanii genome, the transcription profiles of aglF, aglI, aglG and aglB were considered. While only aglF and aglI share a common promoter, transcription of the four genes is co-ordinated, as revealed by determining transcript levels in H. volcanii cells raised in different growth conditions. Such changes in N-glycosylation gene transcription levels offer additional support for the adaptive role of this post-translational modification in H. volcanii.
Collapse
|
24
|
Pfeiffer F, Broicher A, Gillich T, Klee K, Mejía J, Rampp M, Oesterhelt D. Genome information management and integrated data analysis with HaloLex. Arch Microbiol 2008; 190:281-99. [PMID: 18592220 PMCID: PMC2516542 DOI: 10.1007/s00203-008-0389-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 05/08/2008] [Indexed: 11/30/2022]
Abstract
HaloLex is a software system for the central management, integration, curation, and web-based visualization of genomic and other -omics data for any given microorganism. The system has been employed for the manual curation of three haloarchaeal genomes, namely Halobacterium salinarum (strain R1), Natronomonas pharaonis, and Haloquadratum walsbyi. HaloLex, in particular, enables the integrated analysis of genome-wide proteomic results with the underlying genomic data. This has proven indispensable to generate reliable gene predictions for GC-rich genomes, which, due to their characteristically low abundance of stop codons, are known to be hard targets for standard gene finders, especially concerning start codon assignment. The proteomic identification of more than 600 N-terminal peptides has greatly increased the reliability of the start codon assignment for Halobacterium salinarum. Application of homology-based methods to the published genome of Haloarcula marismortui allowed to detect 47 previously unidentified genes (a problem that is particularly serious for short protein sequences) and to correct more than 300 start codon misassignments.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 2008; 190:379-94. [PMID: 18584152 PMCID: PMC2755778 DOI: 10.1007/s00203-008-0399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 05/21/2008] [Accepted: 06/09/2008] [Indexed: 12/25/2022]
Abstract
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.
Collapse
|
26
|
Pfeiffer F, Schuster S, Broicher A, Falb M, Palm P, Rodewald K, Ruepp A, Soppa J, Tittor J, Oesterhelt D. Genome sequences of Halobacterium salinarum: A reply. Genomics 2008. [DOI: 10.1016/j.ygeno.2008.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Characterization of a Haloferax volcanii member of the enolase superfamily: deletion mutant construction, expression analysis, and transcriptome comparison. Arch Microbiol 2008; 190:341-53. [PMID: 18493744 DOI: 10.1007/s00203-008-0379-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/09/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
The enolase superfamily (COG4948) contains proteins with very different biological functions including regulators like the Escherichia coli RspA and metabolic enzymes like enolase. To unravel the biological function of an archaeal family member, an in frame deletion mutant of a gene encoding a COG4948 protein of Haloferax volcanii was generated. The mutant had a lag phase of 3 days after transition from a richer to a poorer medium, in contrast to the wild-type, and the gene was therefore named "important for transition" (iftA). After inoculation of fresh casamino acids or complex medium with stationary phase wild-type cells, the transcript level of iftA was transiently induced at the onset of growth. In contrast, in minimal (or "poor") glucose medium, both transcript and protein were present throughout growth, even in late stationary phase. A comparison of the transcriptomes of deletion mutant and wild-type revealed that transcript levels of a very restricted set of genes were differentially regulated, including genes encoding proteins involved in phosphate metabolism, regulators and stress response proteins. Taken together, the results indicate that IftA might have a dual function, i.e., transiently after transition to fresh medium and permanently during growth in glucose medium.
Collapse
|