1
|
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NDS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, Krishnakumar A, Piña-Escobedo A, Benitez-Guerrero T, Pizano-Zárate ML, Cruz-Narváez Y, García-Mena J. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024; 16:1990. [PMID: 38999737 PMCID: PMC11243545 DOI: 10.3390/nu16131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Daniela Ramírez-Sánchez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Noemí Del Socorro Lázaro-Pérez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - José Javier Castro-Arellano
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Silvia Romero-Maldonado
- Unidad de Cuidados Intermedios al Recién Nacido, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Marisol Salgado-Mancilla
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Yamel Gómez-Cruz
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Aparna Krishnakumar
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - María Luisa Pizano-Zárate
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Unidad de Medicina Familiar No. 4, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| |
Collapse
|
2
|
Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Cats—A Pilot Study. Vet Sci 2022; 9:vetsci9070313. [PMID: 35878330 PMCID: PMC9325039 DOI: 10.3390/vetsci9070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Periodontal diseases are common dental issues in cats. Oral care supplements were used to prevent diseases and maintain oral health. Moreover, maintaining a healthy oral microbiome is crucial for oral health. Therefore, we have developed a gallic acid-containing mouth spray and studied its effect on oral microbiota and dental health in healthy cats. The results revealed that the gingival and plaque indexes were improved after 42 days of mouth spray treatment in cats. The mouth spray treatment also reduced the abundance of harmful bacterial load and supported the growth of normal oral microbiota. This preliminary study recommended that the gallic acid-containing mouth spray could be an essential oral product to improve the oral hygiene of the cats. Abstract This pilot study aimed to investigate the effects of gallic acid-containing mouth spray on oral microbiota in healthy cat subjects. Forty healthy cats were recruited and randomly allocated to the control (G1; n = 20) and treatment groups (G2; n = 20). The cats were treated with mouth spray twice daily for 42 days. The changes in the gingival index (GI) and plaque index (PI) were measured at baseline (day 0) and end of the study (42nd day). The changes in the oral microbial composition of representative animals (control, n = 9; and treatment, n = 8) were also evaluated at baseline and end of the study. Oral microbial composition was assessed by amplifying the V1–V3 region of the 16S rRNA gene from supragingival dental plaque DNA extracts. The sequences were annotated using the QIIME 2.0. The GI and PI were significantly reduced after 42 days of treatment. The deep sequencing revealed that mouth spray influenced the cats’ oral microbiome and was significantly diverse. About 20 phyla and 59 species were observed after 42 days of mouth spray usage in cats’ oral microbiota. The number of operational taxonomic units (OTUs) of post-treatment samples (PoTS) of G2 was greatly reduced compared to other samples. Further analysis revealed that mouth spray acts substantially against Desulfomicrobium orale, one of the known pathogens in periodontal disease. The mouth spray efficiently reduced the growth of 22 species and uprooted 17 species. Moreover, the mouth spray supported the growth of normal oral microbiota, including Moraxella and Neisseria species. The preliminary study suggested that the gallic acids-containing mouth spray could be an essential oral product to improve the oral hygiene of the cats. Moreover, further studies are needed to confirm the beneficial effect of mouth spray on cats.
Collapse
|
3
|
Srivastava A, Mishra S, Garg PK, Dubey AK, Deo SVS, Verma D. Comparative and analytical characterization of the oral bacteriome of smokeless tobacco users with oral squamous cell carcinoma. Appl Microbiol Biotechnol 2022; 106:4115-4128. [PMID: 35596785 DOI: 10.1007/s00253-022-11980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Oral cavity squamous cell carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Smokeless tobacco (SLT) has been well proven for its role in oral carcinogenesis due to the abundance of several carcinogens. However, the role of inhabitant microorganisms in the oral cavity of smokeless tobacco users has not yet been well explored in the context of OSCC. Therefore, the present investigation was conceived to analyze the oral bacteriome of smokeless tobacco users having OSCC (CP group). With the assistance of illumina-based sequencing of bacterial-specific V3 hypervariable region of 16S rDNA gene, 71,969 OTUs (operational taxonomic units) were categorized into 18 phyla and 166 genera. The overall analysis revealed that the oral bacteriome of the patients with OSCC, who were smokeless tobacco users, was significantly different compared to the healthy smokeless tobacco users (HTC group) and non-users (HI users). The appearance of 14 significantly abundant genera [FDR (false discovery rate) adjusted probability value of significance (p value) < 0.05] among the CP group showed the prevalence of tobacco-specific nitrosamines forming bacteria (Staphylococcus, Fusobacterium, and Campylobacter). The functional attributes of the oral bacteriome of the CP group can also be correlated with the genes involved in oncogenesis. This study is the first report on the oral bacteriome of Indian patients with OSCC who were chronic tobacco chewers. The results of the present study will pave the way to understand the influence of smokeless tobacco on the oral bacteriome of OSCC patients. KEY POINTS: • Oral bacteriome of OSCC patients differ from healthy smokeless tobacco (SLT) users and SLT non-users. • Smokeless tobacco influences the oral bacteriome of OSCC group. • Oral bacteriome specific diagnostics may be developed for pre-diagnosis of oral cancer.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Pankaj Kumar Garg
- Department of Surgical Oncology, Shri Guru Ram Rai Institute of Medical and Health Sciences and Shri Mahant Indiresh Hospital, Dehradun, Uttarakhand, India
| | - Ashok Kumar Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
4
|
Srivastava A, Mishra S, Verma D. Characterization of Oral Bacterial Composition of Adult Smokeless Tobacco Users from Healthy Indians Using 16S rDNA Analysis. MICROBIAL ECOLOGY 2021; 82:1061-1073. [PMID: 33634334 DOI: 10.1007/s00248-021-01711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
The present investigation is aiming to report the oral bacterial composition of smokeless tobacco (SLT) users and to determine the influence of SLT products on the healthy Indian population. With the aid of the V3 hypervariable region of the 16S rRNA gene, a total of 8,080,889 high-quality reads were clustered into 15 phyla and 180 genera in the oral cavity of the SLT users. Comparative analysis revealed a more diverse microbiome where two phyla and sixteen genera were significantly different among the SLT users as compared to the control group (p-value < 0.05). The prevalence of Fusobacteria-, Porphyromonas-, Desulfobulbus-, Enterococcus-, and Parvimonas-like genera among SLT users indicates altered bacterial communities among SLT users. Besides, the depletion of health-compatible bacteria such as Lactobacillus and Haemophilus also suggests poor oral health. Here, the majority of the altered genera belong to Gram-negative anaerobes that have been reported for assisting biofilm formation that leads in the progression of several oral diseases. The PICRUSt analysis further supports the hypothesis where a significant increase in the count of the genes involved in the metabolism of nitrogen, amino acids, and nicotinate/nicotinamide was observed among tobacco chewers. Moreover, this study has a high significance in Indian prospects where the SLT consumers are prevalent but we are deficient in information on their oral microbiome.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
5
|
Al-Sardi M, Radwan H, Itbaileh AB, AlMusa Z. Leifsonia Species Bacteremia in a Hemodialysis Patient: A Difficult-to-Identify Organism. Cureus 2021; 13:e17994. [PMID: 34540513 PMCID: PMC8442807 DOI: 10.7759/cureus.17994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Leifsonia is an environmental gram-positive rods bacteria. Infections due to Leifsonia are not common. In this report, we present a case of a hemodialysis patient with Leifsonia bacteremia. A 56-year-old lady had been receiving hemodialysis through the femoral line. She presented with nonspecific symptoms. Multiple blood cultures taken from the central line and peripherally grew gram-positive bacilli, which were identified by polymerase chain reaction (PCR) as Leifsonia species. This serious infection resolved only after the removal of the central venous catheter (CVC) and treatment with vancomycin for four weeks from the first negative blood culture. Leifsonia species are a rare cause of CVC-associated infections. Leifsonia should be considered in hemodialysis patients with gram-positive rod bacteremia. Leifsonia also has the ability to produce a biofilm. Removal of the line along with antibiotics is necessary to cure the infection.
Collapse
Affiliation(s)
- Mais Al-Sardi
- Internal Medicine, King Fahad Specialist Hospital, Dammam, SAU
| | - Hiba Radwan
- Internal Medicine/Infectious Diseases, King Fahad Specialist Hospital, Dammam, SAU
| | | | - Zainab AlMusa
- Internal Medicine/Infectious Diseases, King Fahad Specialist Hospital, Dammam, SAU
| |
Collapse
|
6
|
Daniel N, Rossi Perazza L, Varin TV, Trottier J, Marcotte B, St-Pierre P, Barbier O, Chassaing B, Marette A. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1014-G1033. [PMID: 33881354 DOI: 10.1152/ajpgi.00028.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.
Collapse
Affiliation(s)
- Noëmie Daniel
- Faculty of Food Science, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Laίs Rossi Perazza
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Bruno Marcotte
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Philippe St-Pierre
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, France
| | - André Marette
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| |
Collapse
|
7
|
Benítez-Páez A, Olivares M, Szajewska H, Pieścik-Lech M, Polanco I, Castillejo G, Nuñez M, Ribes-Koninckx C, Korponay-Szabó IR, Koletzko S, Meijer CR, Mearin ML, Sanz Y. Breast-Milk Microbiota Linked to Celiac Disease Development in Children: A Pilot Study From the PreventCD Cohort. Front Microbiol 2020; 11:1335. [PMID: 32655529 PMCID: PMC7324710 DOI: 10.3389/fmicb.2020.01335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
Celiac disease (CeD) is an immune-mediated disorder triggered by exposure to dietary gluten proteins in genetically predisposed individuals. In addition to the host genome, the microbiome has recently been linked to CeD risk and pathogenesis. To progress in our understanding of the role of breast milk microbiota profiles in CeD, we have analyzed samples from a sub-set of mothers (n = 49) included in the PreventCD project, whose children did or did not develop CeD. The results of the microbiota data analysis indicated that neither the BMI, HLA-DQ genotype, the CeD condition nor the gluten-free diet of the mothers could explain the human milk microbiota profiles. Nevertheless, we found that origin country, the offspring’s birth date and, consequently, the milk sampling date influenced the abundance and prevalence of microbes in human milk, undergoing a transition from an anaerobic to a more aerobic microbiota, including potential pathogenic species. Furthermore, certain microbial species were more abundant in milk samples from mothers whose children went on to develop CeD compared to those that remained healthy. These included increases in facultative methylotrophs such as Methylobacterium komagatae and Methylocapsa palsarum as well as in species such as Bacteroides vulgatus, that consumes fucosylated-oligosaccharides present in human milk, and other breast-abscess associated species. Theoretically, these microbiota components could be vertically transmitted from mothers-to-infants during breastfeeding, thereby influencing CeD risk.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Hania Szajewska
- Department of Pediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | - Isabel Polanco
- Department of Pediatric Gastroenterology and Nutrition, La Paz University Hospital, Madrid, Spain
| | - Gemma Castillejo
- Gluten-Associated Disorder Unit, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Merce Nuñez
- Gluten-Associated Disorder Unit, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Munich, Munich, Germany.,Department of Paediatrics, School of Medicine Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Caroline R Meijer
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| |
Collapse
|
8
|
Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment. Sci Rep 2020; 10:5560. [PMID: 32221328 PMCID: PMC7101325 DOI: 10.1038/s41598-020-62130-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
The Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (β-carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
Collapse
|
9
|
Leifsonia flava sp. nov., a novel actinobacterium isolated from the rhizosphere of Aquilegia viridiflora. J Microbiol 2018; 56:549-555. [PMID: 30047083 DOI: 10.1007/s12275-018-8061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
SYP-B2174T is a yellow-pigmented, Gram-positive, non-motile, and rod-shaped actinobacterium isolated from the rhizospheric soil of Aquilegia viridiflora Pall. collected from the Xinjiang uygur autonomous region of China. The strain's growth temperature ranges from 1 to 35°C, with an optimal growth being observed at 28°C. Growth occurs from 0 to 5% NaCl and at pH 6-8, with optimal growth being observed in 1% NaCl at pH 7. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis JCM 17021T and Leifsonia psychrotolerans DSM 22824T with similarities of 97.8 and 97.6%, respectively. The DNA-DNA hybridization values of the strain SYP-B2174T to its closest phylogenetic neighbors were significantly lower than 35.7%. The strain was identified as a novel species of the genus Leifsonia judging by the coryneform morphology, peptidoglycans based upon 2,4-diaminobutyric acid, principal phospholipids phosphatidylglycerol and diphosphatidylglycerol, major menaquinone MK-11, predominant fatty acids of anteiso-C15:0, anteiso-C17:0, and iso-C16:0, and a DNA G + C base composition of 68.7 mol%, for which the name Leifsonia flava sp. nov. is proposed. The type strain is SYP-B2174T (= CGMCC 1.15856T = DSM 105144T = KCTC 39963T).
Collapse
|
10
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
11
|
Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M. Methylophaga and Hyphomicrobium can be used as target genera in monitoring saline water methanol-utilizing denitrification. ACTA ACUST UNITED AC 2016; 43:1647-1657. [DOI: 10.1007/s10295-016-1839-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Which bacterial taxonomic groups can be used in monitoring saline water methanol-utilizing denitrification and whether nitrate is transformed into N2 in the process are unclear. Therefore, methylotrophic bacterial communities of two efficiently functioning (nitrate/nitrite reduction was 63–96 %) tropical and cool seawater reactors at a public aquarium were investigated with clone library analysis and 454 pyrosequencing of the 16S rRNA genes. Transformation of nitrate into N2 was confirmed using 15N labeling in incubation of carrier material from the tropical reactor. Combining the data with previous study results, Methylophaga and Hyphomicrobium were determined to be suitable target genera for monitoring the function of saline water methanol-fed denitrification systems. However, monitoring was not possible at the single species level. Interestingly, potential nitrate-reducing methylotrophs within Filomicrobium and closely related Fil I and Fil II clusters were detected in the reactors suggesting that they also contributed to methylotrophic denitrification in the saline environment.
Collapse
Affiliation(s)
- Antti J Rissanen
- grid.6986.1 0000000093279856 Department of Chemistry and Bioengineering Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Anne Ojala
- grid.7737.4 0000000404102071 Department of Environmental Sciences University of Helsinki P.O. Box 65 FI-00014 Helsinki Finland
- grid.7737.4 0000000404102071 Department of Forest Sciences University of Helsinki P.O. Box 27 FI-00014 Helsinki Finland
| | | | - Jouni Jaakkola
- SEA LIFE, Helsinki Tivolitie 10 FI-00510 Helsinki Finland
| | - Marja Tiirola
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| |
Collapse
|
12
|
Janahiraman V, Anandham R, Kwon SW, Sundaram S, Karthik Pandi V, Krishnamoorthy R, Kim K, Samaddar S, Sa T. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp. FRONTIERS IN PLANT SCIENCE 2016; 7:1626. [PMID: 27872630 PMCID: PMC5097904 DOI: 10.3389/fpls.2016.01626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/14/2016] [Indexed: 05/13/2023]
Abstract
The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis, and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum, and R. solani, increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.
Collapse
Affiliation(s)
- Veeranan Janahiraman
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
- *Correspondence: Rangasamy Anandham
| | - Soon W. Kwon
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Subbiah Sundaram
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Veeranan Karthik Pandi
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Ramasamy Krishnamoorthy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
- Tongmin Sa
| |
Collapse
|
13
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38:996-1047. [PMID: 24861948 PMCID: PMC4262072 DOI: 10.1111/1574-6976.12075] [Citation(s) in RCA: 731] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023] Open
Abstract
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Department for Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of BelgradeBelgrade, Serbia
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
- Departments of Bacteriology and Immunology, and Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
14
|
Zamani I, Bouzari M, Emtiazi G, Ghasemi SM, Chang HI. Complete genome sequence of a novel phage, vB_MoxS-ISF9, infecting methylotrophic Microbacterium: first report of a virulent Microbacterium phage. Arch Virol 2014; 159:2537-40. [PMID: 24777828 DOI: 10.1007/s00705-014-2092-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
Here, we report the first genome sequence of a new virulent phage of Microbacterium oxydans, termed vB_MoxS-ISF9, which was isolated from sewage. Transmission electron microscopy showed that the isolated phage, which has a hexagonal head of about 80 nm in diameter and a long non-contractile tail of about 240 nm, belongs to the family Siphoviridae. The vB_MoxS-ISF9 DNA was completely sequenced and found to be 59,254 bp in length, with a G+C content of 62.76% and 120 putative open reading frames (ORFs). The predicted protein products of the ORFs were identified, and their sequences were analyzed. In a comparison with all available phage genomes, vB_MoxS-ISF9 did not show any significant similarity to other previously reported bacteriophages. To the beast of our knowledge, this is the first report of the isolation and complete genomic sequencing of a virulent phage against a member of the genus Microbacterium.
Collapse
Affiliation(s)
- Isaac Zamani
- Department of Biology, Faculty of Science, University of Isfahan, Hezar Jereeb Street, 81746-73441, Isfahan, Iran
| | | | | | | | | |
Collapse
|
15
|
Septicemia caused by Leifsonia aquatica in a healthy patient after retinal reattachment surgery. J Clin Microbiol 2013; 51:3886-8. [PMID: 23946520 DOI: 10.1128/jcm.01339-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leifsonia aquatica is an aquatic bacterium that is typically found in environmental water habitats. Infections due to L. aquatica are rare and commonly catheter associated in immunocompromised patients. We report the first case of an acute septicemia caused by L. aquatica in a healthy immunocompetent host after cryopexy in the absence of a catheter.
Collapse
|
16
|
Benítez-Páez A, Álvarez M, Belda-Ferre P, Rubido S, Mira A, Tomás I. Detection of transient bacteraemia following dental extractions by 16S rDNA pyrosequencing: a pilot study. PLoS One 2013; 8:e57782. [PMID: 23469240 PMCID: PMC3587628 DOI: 10.1371/journal.pone.0057782] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/24/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The current manuscript aims to determine the prevalence, duration and bacterial diversity of bacteraemia following dental extractions using conventional culture-dependent methods and 16S rDNA pyrosequencing. METHODS The study group included 8 patients undergoing dental extractions under general anaesthesia. Peripheral venous blood samples were collected at baseline, 30 seconds and 15 minutes after the dental extractions. Blood samples were analysed for bacteraemia applying conventional microbiological cultures under aerobic and anaerobic conditions as well as pyrosequencing using universal bacterial primers that target the 16S ribosomal DNA gene. RESULTS Transient bacteremia was detected by culture-based methods in one sample at baseline time, in eight samples at 30 seconds, and in six samples at 15 minutes after surgical procedure; whereas bacteraemia was detected only in five blood samples at 30 seconds after dental extraction by using pyrosequencing. By applying conventional microbiological methods, a single microbial species was detected in six patients, and Streptococcus viridans was the most frequently cultured identified bacterium. By using pyrosequencing approaches however, the estimated blood microbial diversity after dental extractions was 13.4±1.7 bacterial families and 22.8±1.1 genera per sample. CONCLUSION The application of 16S rDNA pyrosequencing underestimated the prevalence and duration of bacteraemia following dental extractions, presumably due to not reaching the minimum DNA required for PCR amplification. However, this molecular technique, unlike conventional culture-dependent methods, revealed an extraordinarily high bacterial diversity of post-extraction bacteraemia. We propose that microorganisms recovered by culture may be only the tip of an iceberg of a really diverse microbiota whose viability and potential pathogenicity should be further studied.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Genomics and Health Department, Centre for Advanced Research in Public Health (CSISP), Valencia, Spain
| | - Maximiliano Álvarez
- Department of Microbiology, University Hospital Complex, Institute for Biomedical Research, Vigo, Spain
| | - Pedro Belda-Ferre
- Genomics and Health Department, Centre for Advanced Research in Public Health (CSISP), Valencia, Spain
| | - Susana Rubido
- School of Medicine and Dentistry, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Alex Mira
- Genomics and Health Department, Centre for Advanced Research in Public Health (CSISP), Valencia, Spain
| | - Inmaculada Tomás
- School of Medicine and Dentistry, Santiago de Compostela University, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
17
|
Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs. ISME JOURNAL 2012; 7:1051-64. [PMID: 23254514 DOI: 10.1038/ismej.2012.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of soil methylotrophs in methanol exchange with the atmosphere has been widely overlooked. Methanol can be derived from plant polymers and be consumed by soil microbial communities. In the current study, methanol-utilizing methylotrophs of 14 aerated soils were examined to resolve their comparative diversities and capacities to utilize ambient concentrations of methanol. Abundances of cultivable methylotrophs ranged from 10(6)-10(8) gsoilDW(-1). Methanol dissimilation was measured based on conversion of supplemented (14)C-methanol, and occurred at concentrations down to 0.002 μmol methanol gsoilDW(-1). Tested soils exhibited specific affinities to methanol (a(0)s=0.01 d(-1)) that were similar to those of other environments suggesting that methylotrophs with similar affinities were present. Two deep-branching alphaproteobacterial genotypes of mch responded to the addition of ambient concentrations of methanol (0.6 μmol methanol gsoilDW(-1)) in one of these soils. Methylotroph community structures were assessed by amplicon pyrosequencing of genes of mono carbon metabolism (mxaF, mch and fae). Alphaproteobacteria-affiliated genotypes were predominant in all investigated soils, and the occurrence of novel genotypes indicated a hitherto unveiled diversity of methylotrophs. Correlations between vegetation type, soil pH and methylotroph community structure suggested that plant-methylotroph interactions were determinative for soil methylotrophs.
Collapse
|
18
|
Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One 2012; 7:e51557. [PMID: 23251574 PMCID: PMC3519724 DOI: 10.1371/journal.pone.0051557] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 11/05/2012] [Indexed: 12/31/2022] Open
Abstract
A comparison of the diversity of bacterial communities in the larval midgut and adult gut of the European forest cockchafer (Melolontha hippocastani) was carried out using approaches that were both dependent on and independent of cultivation. Clone libraries of the 16S rRNA gene revealed 150 operational taxonomic units (OTUs) that belong to 11 taxonomical classes and two other groups that could be classified only to the phylum level. The most abundant classes were β, δ and γ-proteobacteria, Clostridia, Bacilli, Erysipelotrichi and Sphingobacteria. Although the insect’s gut is emptied in the prepupal stage and the beetle undergoes a long diapause period, a subset of eight taxonomic classes from the aforementioned eleven were found to be common in the guts of diapausing adults and the larval midguts (L2, L3). Moreover, several bacterial phylotypes belonging to these common bacterial classes were found to be shared by the larval midgut and the adult gut. Despite this, the adult gut bacterial community represented a subset of that found in the larvae midgut. Consequently, the midgut of the larval instars contains a more diverse bacterial community compared to the adult gut. On the other hand, after the bacteria present in the larvae were cultivated, eight bacterial species were isolated. Moreover, we found evidence of the active role of some of the bacterial species isolated in food digestion, namely, the presence of amylase and xylanolytic properties. Finally, fluorescence in situ hybridization allowed us to confirm the presence of selected species in the insect gut and through this, their ecological niche as well as the metagenomic results. The results presented here elucidated the heterogeneity of aerobic and facultative bacteria in the gut of a holometabolous insect species having two different feeding habits.
Collapse
|
19
|
Abstract
The human mouth harbours one of the most diverse microbiomes in the human body, including viruses, fungi, protozoa, archaea and bacteria. The bacteria are responsible for the two commonest bacterial diseases of man: dental caries (tooth decay) and the periodontal (gum) diseases. Archaea are restricted to a small number of species of methanogens while around 1000 bacterial species have been found, with representatives from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes, Synergistetes and Tenericutes and the uncultured divisions GN02, SR1 and TM7. Around half of oral bacteria are as yet uncultured and culture-independent methods have been successfully used to comprehensively describe the oral bacterial community. The human oral microbiome database (HOMD, www.homd.org) provides a comprehensive resource consisting of descriptions of oral bacterial taxa, a 16S rRNA identification tool and a repository of oral bacterial genome sequences. Individuals' oral microbiomes are highly specific at the species level, although overall the human oral microbiome shows few geographical differences. Although caries and periodontitis are clearly bacterial diseases, they are not infectious diseases in the classical sense because they result from a complex interaction between the commensal microbiota, host susceptibility and environmental factors such as diet and smoking. Periodontitis, in particular, appears to result from an inappropriate inflammatory reaction to the normal microbiota, exacerbated by the presence of some disease-associated bacterial species. In functional terms, there appears to considerable redundancy among the oral microbiota and a focus on functional rather than phylogenetic diversity may be required in order to fully understand host-microbiome interactions.
Collapse
Affiliation(s)
- William G Wade
- King's College London Dental Institute, Microbiology Unit, Floor 17, Tower Wing, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
20
|
Catheter-associated bloodstream infection caused by Leifsonia aquatica in a haemodialysis patient: a case report. J Med Microbiol 2012; 61:868-873. [DOI: 10.1099/jmm.0.037457-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Drzyzga O. The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 2012; 38:300-16. [PMID: 22551505 DOI: 10.3109/1040841x.2012.668134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review about the genus Gordonia provides a current overview of recent research on a young genus that was introduced in the year 1997 ( Stackebrandt et al., 1997 ). This emerging genus has attracted increasing environmental, industrial, biotechnological and medical interest during the last few years, in particular due to the capabilities of its members to degrade, transform, and synthesize organic compounds as well as to the pathogenic effects that have been described in many case studies. The number of publications about Gordonia has increased significantly after the year 2004 (the year of the first Gordonia review published by Arenskötter et al.) describing 13 new validly published species (type strains), many newly described physiological and metabolic capabilities, new patent applications and many new case reports of bacterial infections. Members of the genus Gordonia are widely distributed in nature and it is therefore important to unravel the species richness and metabolic potential of gordoniae in future studies to demonstrate their environmental impact especially on the degradation of persistent organic compounds and their ecological participation in the carbon cycle of organic material in soil and water. This review summarizes mainly the current state of importance and potential of the members of this genus for the environmental and biotechnological industry ("the strengthsâ) and briefly its pathogenic impact to humans ("the weaknessesâ).
Collapse
Affiliation(s)
- Oliver Drzyzga
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Tani A, Takai Y, Suzukawa I, Akita M, Murase H, Kimbara K. Practical application of methanol-mediated mutualistic symbiosis between Methylobacterium species and a roof greening moss, Racomitrium japonicum. PLoS One 2012; 7:e33800. [PMID: 22479445 PMCID: PMC3315585 DOI: 10.1371/journal.pone.0033800] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/17/2012] [Indexed: 12/05/2022] Open
Abstract
Bryophytes, or mosses, are considered the most maintenance-free materials for roof greening. Racomitrium species are most often used due to their high tolerance to desiccation. Because they grow slowly, a technology for forcing their growth is desired. We succeeded in the efficient production of R. japonicum in liquid culture. The structure of the microbial community is crucial to stabilize the culture. A culture-independent technique revealed that the cultures contain methylotrophic bacteria. Using yeast cells that fluoresce in the presence of methanol, methanol emission from the moss was confirmed, suggesting that it is an important carbon and energy source for the bacteria. We isolated Methylobacterium species from the liquid culture and studied their characteristics. The isolates were able to strongly promote the growth of some mosses including R. japonicum and seed plants, but the plant-microbe combination was important, since growth promotion was not uniform across species. One of the isolates, strain 22A, was cultivated with R. japonicum in liquid culture and in a field experiment, resulting in strong growth promotion. Mutualistic symbiosis can thus be utilized for industrial moss production.
Collapse
Affiliation(s)
- Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
First report of sepsis caused by Rhodococcus corynebacterioides in a patient with myelodysplastic syndrome. J Clin Microbiol 2012; 50:1089-91. [PMID: 22205796 DOI: 10.1128/jcm.06279-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of sepsis caused by Rhodococcus corynebacterioides, identified using 16S rRNA gene sequencing, in a myelodysplastic syndrome patient who had undergone hematopoietic stem cell transplantation. This is the first report of R. corynebacterioides infection in a human.
Collapse
|