1
|
Liu C, Mao X, Meng L, Li J. Stresses make microbe undergo programmed cell death: Mechanisms and opportunities. Food Res Int 2022; 157:111273. [DOI: 10.1016/j.foodres.2022.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
2
|
Carvalho Junior AR, Martins ALDB, Cutrim BDS, Santos DM, Maia HS, Silva MSMD, Zagmignan A, Silva MRC, Monteiro CDA, Guilhon GMSP, Cantanhede Filho AJ, Nascimento da Silva LC. Betulinic Acid Prevents the Acquisition of Ciprofloxacin-Mediated Mutagenesis in Staphylococcus aureus. Molecules 2019; 24:molecules24091757. [PMID: 31067626 PMCID: PMC6539033 DOI: 10.3390/molecules24091757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
The occurrence of damage on bacterial DNA (mediated by antibiotics, for example) is intimately associated with the activation of the SOS system. This pathway is related to the development of mutations that might result in the acquisition and spread of resistance and virulence factors. The inhibition of the SOS response has been highlighted as an emerging resource, in order to reduce the emergence of drug resistance and tolerance. Herein, we evaluated the ability of betulinic acid (BA), a plant-derived triterpenoid, to reduce the activation of the SOS response and its associated phenotypic alterations, induced by ciprofloxacin in Staphylococcus aureus. BA did not show antimicrobial activity against S. aureus (MIC > 5000 µg/mL), however, it (at 100 and 200 µg/mL) was able to reduce the expression of recA induced by ciprofloxacin. This effect was accompanied by an enhancement of the ciprofloxacin antimicrobial action and reduction of S. aureus cell volume (as seen by flow cytometry and fluorescence microscopy). BA could also increase the hyperpolarization of the S. aureus membrane, related to the ciprofloxacin action. Furthermore, BA inhibited the progress of tolerance and the mutagenesis induced by this drug. Taken together, these findings indicate that the betulinic acid is a promising lead molecule in the development helper drugs. These compounds may be able to reduce the S. aureus mutagenicity associated with antibiotic therapies.
Collapse
Affiliation(s)
| | | | | | - Deivid Martins Santos
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | - Hermerson Sousa Maia
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | | | - Adrielle Zagmignan
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | | | | | | | | | | |
Collapse
|
3
|
Wadhawan S, Gautam S. Rescue of Escherichia coli cells from UV-induced death and filamentation by caspase-3 inhibitor. Int Microbiol 2019; 22:369-376. [DOI: 10.1007/s10123-019-00060-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/25/2022]
|
4
|
Asplund-Samuelsson J, Sundh J, Dupont CL, Allen AE, McCrow JP, Celepli NA, Bergman B, Ininbergs K, Ekman M. Diversity and Expression of Bacterial Metacaspases in an Aquatic Ecosystem. Front Microbiol 2016; 7:1043. [PMID: 27458440 PMCID: PMC4933709 DOI: 10.3389/fmicb.2016.01043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms. Metacaspase genes were restricted to ~4% of the bacteria, taxonomically affiliated mainly to Bacteroidetes, Alpha- and Betaproteobacteria and Cyanobacteria. The gene abundance was significantly higher in larger or particle-associated bacteria (>0.8 μm), and filamentous Cyanobacteria dominated metacaspase gene expression throughout the bloom season. Distinct seasonal expression patterns were detected for the three metacaspase genes in Nodularia spumigena, one of the main bloom-formers. Clustering of normalized gene expression in combination with analyses of genomic and assembly data suggest functional diversification of these genes, and possible roles of the metacaspase genes related to stress responses, i.e., sulfur metabolism in connection to oxidative stress, and nutrient stress induced cellular differentiation. Co-expression of genes encoding metacaspases and nodularin toxin synthesis enzymes was also observed in Nodularia spumigena. The study shows that metacaspases represent an adaptation of potentially high importance for several key organisms in the Baltic Sea, most prominently Cyanobacteria, and open up for further exploration of their physiological roles in microbes and assessment of their ecological impact in aquatic habitats.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - John Sundh
- Science for Life Laboratory, Department of Biology and Environmental Science, Linnaeus UniversitySolna, Sweden
| | - Chris L. Dupont
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Andrew E. Allen
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - John P. McCrow
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Narin A. Celepli
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Birgitta Bergman
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Karolina Ininbergs
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Martin Ekman
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| |
Collapse
|
5
|
Characterization of cell death in Escherichia coli mediated by XseA, a large subunit of exonuclease VII. J Microbiol 2015; 53:820-8. [PMID: 26626352 DOI: 10.1007/s12275-015-5304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Exonuclease VII (ExoVII) of Escherichia coli is a single strandspecific DNA nuclease composed of two different subunits: the large subunit, XseA, and the small subunit, XseB. In this study, we found that multicopy single-stranded DNAs (msDNAs), Ec83 and Ec78, are the in vivo substrates of ExoVII; the enzyme cuts the phosphodiester bond between the fourth and fifth nucleotides from the 5'end. We used this msDNA cleavage to assess ExoVII activity in vivo. Both subunits were required for enzyme activity. Expression of XseA without XseB caused cell death, even though no ExoVII activity was detected. The lethality caused by XseA was rescued by surplus XseB. In XseA-induced death, cells were elongated and multinucleated, and their chromosomes were fragmented and condensed; these are the morphological hallmarks of apoptotic cell death in bacteria. A putative caspase recognition sequence (FVAD) was found in XseA, and its hypothetical caspase product with 257 amino acids was as active as the intact protein in inducing cell death. We propose that under ordinary conditions, XseA protects chromosome as a component of the ExoVII enzyme, but in some conditions, the protein causes cell death; the destruction of cell is probably carried out by the amino terminal fragment derived from the cleavage of XseA by caspase-like enzyme.
Collapse
|
6
|
Klemenčič M, Novinec M, Dolinar M. Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of
M
icrocystis aeruginosa. Mol Microbiol 2015; 98:142-50. [DOI: 10.1111/mmi.13110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| |
Collapse
|
7
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
8
|
Wadhawan S, Gautam S, Sharma A. Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. PLoS One 2014; 9:e96423. [PMID: 24788936 PMCID: PMC4006831 DOI: 10.1371/journal.pone.0096423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022] Open
Abstract
Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.
Collapse
Affiliation(s)
- Surbhi Wadhawan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Arun Sharma
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|