1
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Lee KW, Kim JG, Veerappan K, Chung H, Natarajan S, Kim KY, Park J. Utilizing Red Spotted Apollo Butterfly Transcriptome to Identify Antimicrobial Peptide Candidates against Porphyromonas gingivalis. INSECTS 2021; 12:insects12050466. [PMID: 34069966 PMCID: PMC8157869 DOI: 10.3390/insects12050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Classical antibiotics are the foremost treatment strategy against microbial infections. Overuse of this has led to the evolution of antimicrobial resistance. Antimicrobial peptides (AMPs) are natural defense elements present across many species including humans, insects, bacteria, and plants. Insect AMPs are our area of interest, because of their stronger abilities in host defense. We have deciphered AMPs from an endangered species Parnassius bremeri, commonly known as the red spotted apollo butterfly. It belongs to the second largest insect order Lepidoptera, comprised of butterflies and moths, and lives in the high altitudes of Russia, China, and Korea. We aimed at identifying the AMPs from the larvae stages. The rationale of choosing this stage is that the P. bremeri larvae development occurs at extremely low temperature conditions, which might serve as external stimuli for AMP production. RNA was isolated from larvae (L1 to L5) instar stages and subjected to next generation sequencing. The transcriptomes obtained were curated in in-silico pipelines. The peptides obtained were screened for requisite AMP physicochemical properties and in vitro antimicrobial activity. With the sequential screening and validation, we obtained fifteen candidate AMPs. One peptide TPS-032 showed promising antimicrobial activity against Porphyromonas gingivalis, a primary causative organism of periodontitis.
Collapse
Affiliation(s)
- Kang-Woon Lee
- Holoce Ecosystem Conservation Research Institute (HECRI), Hweongsung 25257, Gangwon-do, Korea;
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea;
| | - Karpagam Veerappan
- 3BIGS Co. Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Gyeonggi-do, Korea; (K.V.); (H.C.); (S.N.)
| | - Hoyong Chung
- 3BIGS Co. Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Gyeonggi-do, Korea; (K.V.); (H.C.); (S.N.)
| | - Sathishkumar Natarajan
- 3BIGS Co. Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Gyeonggi-do, Korea; (K.V.); (H.C.); (S.N.)
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea;
- Department of Genetics and Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (K.-Y.K.); (J.P.)
| | - Junhyung Park
- 3BIGS Co. Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Gyeonggi-do, Korea; (K.V.); (H.C.); (S.N.)
- Correspondence: (K.-Y.K.); (J.P.)
| |
Collapse
|
3
|
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6853652. [PMID: 32258136 PMCID: PMC7086434 DOI: 10.1155/2020/6853652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Objective To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels. Methods The disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. The minimal inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. Results The diameter (10.18 ± 1.744 mm) of inhibition zones formed by GERM CLEAN preliminarily indicated its inhibitory effect on the major cariogenic bacteria S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and this was consistent with our phenotypic results. Conclusion The novel antimicrobial peptide containing oral spray GERM CLEAN has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.S. mutans was determined by the broth dilution method.
Collapse
|
4
|
Moretti A, Weeks RM, Chikindas M, Uhrich KE. Cationic Amphiphiles with Specificity against Gram-Positive and Gram-Negative Bacteria: Chemical Composition and Architecture Combat Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5557-5567. [PMID: 30888181 PMCID: PMC6832706 DOI: 10.1021/acs.langmuir.9b00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small-molecule cationic amphiphiles (CAms) were designed to combat the rapid rise in drug-resistant bacteria. CAms were designed to target and compromise the structural integrity of bacteria membranes, leading to cell rupture and death. Discrete structural features of CAms were varied, and structure-activity relationship studies were performed to guide the rational design of potent antimicrobials with desirable selectivity and cytocompatibility profiles. In particular, the effects of cationic conformational flexibility, hydrophobic domain flexibility, and hydrophobic domain architecture were evaluated. Their influence on antimicrobial efficacy in Gram-positive and Gram-negative bacteria was determined, and their safety profiles were established by assessing their impact on mammalian cells. All CAms have a potent activity against bacteria, and hydrophobic domain rigidity and branched architecture contribute to specificity. The insights gained from this project will aid in the optimization of CAm structures.
Collapse
Affiliation(s)
- Alysha Moretti
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Richard M. Weeks
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Michael Chikindas
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Kathryn E. Uhrich
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
5
|
Favaro L, Todorov SD. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Probiotics Antimicrob Proteins 2018; 9:444-458. [PMID: 28921417 DOI: 10.1007/s12602-017-9330-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, 580, Professor Lineu Prestes, 13B, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
6
|
Gerits E, Spincemaille P, De Cremer K, De Brucker K, Beullens S, Thevissen K, Cammue BPA, Vandamme K, Fauvart M, Verstraeten N, Michiels J. Repurposing AM404 for the treatment of oral infections by Porphyromonas gingivalis. Clin Exp Dent Res 2017; 3:69-76. [PMID: 29744181 PMCID: PMC5719815 DOI: 10.1002/cre2.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 01/21/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen involved in oral diseases such as periodontitis and peri‐implantitis. Management of these diseases typically includes mechanical debridement of the colonized surfaces followed by application of antiseptics or antibiotics. Disadvantages associated with the use of antiseptics and the growing worldwide problem of antibiotic resistance have necessitated the search for alternative agents. In this study, the antibacterial and antibiofilm properties of AM404, an active metabolite of paracetamol, were tested against P. gingivalis and other bacterial pathogens. The activity of AM404 was tested against 10 bacteria, including both oral and nonoral human pathogens. The minimal inhibitory concentration (MIC) of AM404 was determined by measuring optical density (OD) values. The minimum biofilm inhibitory concentration (MBIC) was detected by crystal violet staining. The activity of structural analogs of AM404 was tested by MIC determinations. The effect of AM404 on P. gingivalis biofilms formed on titanium disks as a model for dental implants was evaluated by colony forming unit counting. Potential cytotoxicity of AM404 towards HEK‐293 (human embryonic kidney cells), HepG2 (human hepatoma cells), IEC‐6 (rat intestinal cells), and Panc‐1 cells (pancreatic cancer cells) was assessed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays. To get more insight in the mode of action of AM404, we used the fluorescent dyes N‐phenyl‐1‐napthylamine and SYTOX green to investigate outer and inner membrane damage of P. gingivalis induced by AM404, respectively. Of all tested pathogens, AM404 only inhibited growth and biofilm formation of P. gingivalis. Moreover, it showed potent activity against P. gingivalis biofilms formed on titanium surfaces. A structure–activity analysis demonstrated that the unsaturated carbon chain is essential for its antibacterial activity. Importantly, AM404 was not toxic towards the tested mammalian cells up to concentrations approaching 4× the MIC. Membrane damage assays using fluorescent probes N‐phenyl‐1‐napthylamine and SYTOX green revealed that membrane permeabilization presumably is the primary antibacterial mode of action of AM404. Collectively, our results suggest that AM404 has the potential to be used for the development of new drugs specifically targeting P. gingivalis‐related infections.
Collapse
Affiliation(s)
- Evelien Gerits
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine University Hospitals Leuven Leuven Belgium
| | - Kaat De Cremer
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Plant Systems Biology VIB Ghent Belgium
| | - Katrijn De Brucker
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Serge Beullens
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Karin Thevissen
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Bruno P A Cammue
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Plant Systems Biology VIB Ghent Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences UZ Leuven, Restorative Dentistry-KU Leuven, BIOMAT Leuven Belgium
| | - Maarten Fauvart
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Life Science Technologies imec, Smart Systems and Emerging Technologies Unit Belgium
| | - Natalie Verstraeten
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Jan Michiels
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| |
Collapse
|
7
|
Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 2017; 49:16-35. [PMID: 27845274 DOI: 10.1016/j.actbio.2016.11.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic host-defense molecules that provide the early stage of protection against invading microbes. They also have important modulatory roles and act as a bridge between innate and acquired immunity. The types and functions of oral AMPs were reviewed and experimental reports on the use of natural AMPs and their synthetic mimics in caries and pulpal infections were discussed. Natural AMPs in the oral cavity, predominantly defensins, cathelicidins and histatins, possess antimicrobial activities against oral pathogens and biofilms. Incomplete debridement of microorganisms in root canal space may precipitate an exacerbated immune response that results in periradicular bone resorption. Because of their immunomodulatory and wound healing potentials, AMPs stimulate pro-inflammatory cytokine production, recruit host defense cells and regulate immuno-inflammatory responses in the vicinity of the pulp and periapex. Recent rapid advances in the development of synthetic AMP mimics offer exciting opportunities for new therapeutic initiatives in root canal treatment and regenerative endodontics. STATEMENT OF SIGNIFICANCE Identification of new therapeutic strategies to combat antibiotic-resistant pathogens and biofilm-associated infections continues to be one of the major challenges in modern medicine. Despite the presence of commercialization hurdles and scientific challenges, interests in using antimicrobial peptides as therapeutic alternatives and adjuvants to combat pathogenic biofilms have never been foreshortened. Not only do these cationic peptides possess rapid killing ability, their multi-modal mechanisms of action render them advantageous in targeting different biofilm sub-populations. These factors, together with adjunctive bioactive functions such as immunomodulation and wound healing enhancement, render AMPs or their synthetic mimics exciting candidates to be considered as adjuncts in the treatment of caries, infected pulps and root canals.
Collapse
|
8
|
Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiol 2016; 16:188. [PMID: 27538539 PMCID: PMC4990846 DOI: 10.1186/s12866-016-0810-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αβ on P. gingivalis. Results Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αβ) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αβ. The antimicrobial activity of PLNC8 αβ was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis. Conclusion Soluble or immobilized PLNC8 αβ bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0810-8) contains supplementary material, which is available to authorized users.
Collapse
|